首页|基于改进蚁群算法的微气泡减阻气流量智能调控技术研究

基于改进蚁群算法的微气泡减阻气流量智能调控技术研究

扫码查看
[目的]为了提高微气泡减阻技术的实际效能,基于改进蚁群算法开展微气泡减阻气流量智能调控技术研究.[方法]首先,基于微气泡减阻机理,利用自主研发船模样机开展微气泡减阻试验,获得不同航速下的理想最佳气流量;随后,采用改进蚁群算法,开发气流量智能调控技术的软件系统;最后,将智能调控硬件系统应用于船模样机,开展自航模试验以验证该技术的有效性.[结果]所研技术不仅可以有效地调控气流量达到最佳微气泡减阻效果,还可以监控航速变化对气流量进行自适应调控,使船舶在各种航速下均能保持最大减阻.[结论]该技术可以提高微气泡减阻技术的自动化与智能程度,增强微气泡减阻技术的实际效能.
Intelligent airflow control technology for microbubble drag reduction based on improved ant colony optimization algorithm
[Objective]In order to improve the actual efficiency of microbubble drag reduction technology,this study develops intelligent airflow control technology for microbubble drag reduction based on an im-proved ant colony optimization(ACO)algorithm.[Methods]Based on the mechanism of microbubble drag reduction,the ideal optimal airflow rate at different speeds is obtained by carrying out microbubble drag reduc-tion tests on a self-developed ship model prototype.The software system of intelligent airflow control techno-logy is developed by employing the improved ACO algorithm.A self-propelled test on a ship model installed with an intelligent control hardware system is carried out to verify the actual drag reduction effect of this tech-nology.[Results]The technology proposed in this study can effectively control the airflow to reach the op-timal microbubble drag reduction condition,and can also monitor the speed change and adaptively control the airflow to achieve the best drag reduction conditions at various speeds.[Conclusion]This technique im-proves the automation and intelligence level of microbubble drag reduction technology while enhancing its ac-tual efficacy.

microbubble drag reductionimproved ant colony optimization algorithmintelligent control of airflowself-propelled model test

李天臣、周彦安、裴志勇、吴卫国

展开 >

武汉理工大学 船海与能源动力工程学院,湖北 武汉 430063

武汉理工大学 绿色智能江海直达船舶与邮轮游艇研究中心,湖北 武汉 430063

绿色智能江海直达船舶湖北省工程研究中心,湖北 武汉 430063

微气泡减阻 改进蚁群算法 气流量智能调控 自航模试验

湖北省重点研发计划资助项目

20211G0104

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(5)