首页|基于YOLO-FNC模型的轻量化船舶检测方法

基于YOLO-FNC模型的轻量化船舶检测方法

扫码查看
[目的]针对交通密集的港口、船舶聚集的渔船作业区以及船岸混合交通场景等复杂环境,提出一种基于 YOLO-FNC模型的船舶检测方法.[方法]首先,设计一种基于 FasterNet思想的神经网络模块FasterNeXt,并将该模块替换YOLO模型中的C3 模块,在不影响准确性的条件下确保运行速度更快.其次,将NAM注意力机制融入网络结构中,通过利用稀疏的权重惩罚抑制特征权重确保权重的计算更加高效.最后,提出新的边界框回归损失以加快预测帧调整并增加帧回归率,提升网络模型收敛速度.[结果]实验结果表明,在自建的复杂场景下船舶数据集进行检测实验,与YOLOv5s算法相比,所提方法的mAP@0.5 提升6.35%,参数量减少 9.74%,计算量减少 11.39%.[结论]该检测方法有效实现了轻量化、高精度的船舶检测.
Lightweight ship detection method based on YOLO-FNC model
[Objective]A lightweight and efficient ship detection method based on the YOLO-FNC model is proposed for complex environments such as ports with dense traffic.[Method]First,a FasterNeXt neural network module is designed on the basis of the FasterNet method and replaces the C3 module in the YOLO model to ensure faster operation without affecting accuracy.Second,a normalization-based attention module(NAM)is integrated into the network structure and the sparse weight penalty is used to suppress the feature weights and ensure more efficient weight calculation.Finally,a new bounding box regression loss is proposed to speed up the prediction frame adjustment and increase the regression rate,thereby improving the conver-gence rate of the network mode.[Results]The experimental results show that when performing detection experiments on ship datasets in a self-built complex environment,the proposed method improves the mAP@0.5 by 6.35%,reduces the parameter count by 9.74%and reduces the computational complexity by 11.39%.[Conclusion]The proposed method effectively achieves lightweight and high-precision ship detec-tion compared with the YOLOv5s algorithm.

ship target detectionYOLOv5sYOLO-FNC

张炳焱、张闯、石振男、刘松涛

展开 >

大连海事大学 航海学院,辽宁 大连 116026

盘锦海事局 通航管理处,辽宁 盘锦 124211

船舶目标检测 YOLOv5s YOLO-FNC

辽宁省应用基础研究计划资助项目大连海事大学航海学院2023年一流学科交叉研究资助项目

2022JH2/1013002652023JXB14

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(5)