首页|基于YOLOv5s的轻量化遥感舰船检测算法

基于YOLOv5s的轻量化遥感舰船检测算法

扫码查看
[目的]针对遥感图像舰船目标检测任务中轻量化和快速推理的需求,提出一种基于改进YOLOv5s的轻量化遥感舰船目标检测算法LR-YOLO.[方法]首先,主干网络采用ShuffleNet v2 Block堆叠方式,有效减少算法的参数量并提高计算速度;其次,设计区域选择模块Filter,选择感兴趣的区域,更充分地提取有效特征;最后,引入圆形光滑标签计算角度损失,对遥感舰船目标进行旋转检测,并采用可变形卷积,以此来适应几何形变,提升检测效果.[结果]在HRSC2016 舰船数据集上的实验结果表明,该算法的检测精度达到92.90%,提高 1.3%,并且算法参数量仅为基线模型的 39.33%.[结论]该算法实现了轻量化和检测准确率的平衡,为轻量化遥感舰船目标检测提供了参考.
Lightweight remote sensing ship detection algorithm based on YOLOv5s
[Objective]This paper proposes a lightweight remote sensing ship target detection algorithm LR-YOLO based on improved YOLOv5s to meet the lightweight and fast inference requirements of ship target de-tection tasks involving remote sensing images.[Methods]First,the backbone network adopts the ShuffleN-et v2 block stacking method,effectively reducing the number of network model parameters and improving the computational speed;second,a region selection module filter is designed to select regions of interest and ex-tract effective features more fully;finally,a circular smooth label is introduced to calculate angle loss and per-form rotation detection on remote sensing ship targets,while deformable convolution is used to adapt to geo-metric deformation and improve detection performance.[Results]The experimental results on the HRSC2016 ship dataset show that the detection accuracy of the algorithm reaches 92.90%,an improvement of 1.3%,with the number of network model parameters only 39.33%that of the baseline model.[Conclusion]The proposed algorithm achieves a balance between lightweight and detection accuracy,providing references for remote sensing ship target detection.

YOLOv5sremote sensing imagesship target detectiondeformable convolutioncircular smooth label

王浩臣、辛月兰、郭江、王庆庆

展开 >

青海师范大学 物理与电子信息工程学院,青海 西宁 810001

YOLOv5s 遥感图像 舰船目标检测 可变形卷积 圆形平滑标签

国家自然科学基金资助项目青海省自然科学基金面上资助项目

616620622022-ZJ-929

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(5)