首页|基于GA-GMDH算法的离心泵退化识别

基于GA-GMDH算法的离心泵退化识别

扫码查看
[目的]为实时监测离心泵的健康状态,提出一种可实时识别离心泵退化状态的模型.[方法]首先,基于离心泵的运行参数和退化机理,利用主客观相结合的组合赋权模型来计算组合权重,进而构建离心泵退化过程中的健康指标;然后,基于现有离心泵的退化数据,提出基于遗传优化-数据分组处理(GA-GMDH)算法的离心泵退化监测模型.[结果]GA-GMDH监测模型的可靠性较高,其健康指标输出值与真实值的均方根误差为 0.029 216,依据该模型输出结果进行退化状态识别的精度为 93.333%.[结论]研究成果可为离心泵的健康状态监测以及维护运营管理提供参考.
Centrifugal pump degradation identification based on GA-GMDH algorithm
[Objective]In order to monitor the health status of a centrifugal pump in real time,this study proposes a model for the real-time identification of the degradation state of centrifugal pumps.[Methods]First,based on the operating parameters and degradation mechanism of the centrifugal pump,a combined weighting model using a combination of subjective and objective weights is used to calculate the combined weights,then a health index during the degradation process of the centrifugal pump is constructed.Second,based on the ex-isting pump degradation data,a degradation identification model based on the genetic algorithm-group method of data handling(GA-GMDH)algorithm is proposed.[Results]The reliability of the GA-GMDH monitoring model is relatively high,with a root mean square error of 0.029 216 between the output values of the health index and the actual values.Based on the model's output results,the accuracy of degrada-tion state identification is 93.333%.[Conclusion]The results of this study can provide valuable references for the health monitoring and maintenance operation management of centrifugal pumps.

centrifugal pumpcombinatorial empowermenthealth indicatorsgroup method of data hand-ling(GMDH)degenerate state identification

孙广西、曹辉、张子威、马振豪

展开 >

大连海事大学 轮机工程学院,辽宁 大连 116026

大连海大智船科技有限责任公司,辽宁 大连 116026

离心泵 组合赋权 健康指标 数据分组处理方法 退化状态识别

国家重点研发计划资助项目辽宁省科技厅科学技术计划资助项目

2022YFB43014032022JH1/10800097

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(5)