首页|1967~2033 nm波段硅基可调谐外腔半导体激光器设计与仿真

1967~2033 nm波段硅基可调谐外腔半导体激光器设计与仿真

扫码查看
2 μm波长附近可调谐半导体激光器在分子光谱学和光通信领域中有广阔的应用前景。基于绝缘体上硅(SOI)平台,对2 μm波长附近可调谐半导体激光器的外腔部分进行了设计优化。分析了不同尺寸光波导的模式损耗特性、单个微环谐振腔受总线波导耦合间距的作用以及总线波导光反馈终端对外腔半导体激光器性能的影响。并提出了一种具有高工艺兼容度的多模环形光波导光反馈结构。所设计的可调谐半导体激光器硅基外腔可通过环形波导上的镍铬合金微加热器进行0。1 nm/K的高精度调谐,对单个微加热器施加3。2 V电压时,调谐范围可达66 nm(1967~2033 nm)。
Design and Simulation of Silicon-Based Tunable External Cavity Diode Lasers in the 1967-2033 nm Wavelength Range
Objective The tunable laser near the 2 μm wavelength has attracted significant attention due to its importance in gas detection and potential as a core component in high-capacity optical communication technologies.The scheme based on the integration of a silicon photonic chip with a Ⅲ-Ⅴ gain chip is gaining popularity in the research field of external cavity tunable lasers owing to its narrow linewidth and wide tuning range.While previous studies have primarily explored the~1.55 μm wavelength range,limited research has been conducted on~2 μm wavelength external cavity semiconductor lasers(ECDLs).In addition,in the fields of spatial signal transmission and gas detection,ECDLs must meet higher requirements for the output power,side mode suppression ratio(SMSR),and stability.Therefore,further optimization of the external cavity of the~2 μm tunable laser is needed.Methods Based on the 220 nm silicon-on-insulator(SOI)platform,we first used the Lumerical mode to simulate and analyze the mode loss characteristics of optical waveguides with different cross-sectional sizes and bending radii.We then studied the impact of the microring resonator Ggapmrr on the performance of a vernier filter(including the Q value,side mode suppression ratio,linewidth,and transmission loss).In addition,we analyzed the effect of waveguide termination reflectivity on the stability of the external cavity of a tunable laser and proposed waveguide termination based on the scattering and bending loss characteristics of multimode waveguides to terminate stray light in the waveguide.Finally,a thermal conduction analysis of the vernier filter was performed using Lumerical device,and the thermal analysis data were imported into Lumerical interconnect to study the thermal tuning performance of the tunable laser external cavity.Results Based on the above methodology,Si waveguide widths ranging from 0.28 μm to 0.63 μm facilitate quasi-single-mode transmission within the 1.95-2.05 μm wavelength range(Fig.2).Investigations of various Si waveguide thicknesses indicate a stable effective refractive-index difference between TE00 and TM00 when the waveguide thickness is below 0.24 μm(Fig.3).Optimizing the waveguide width enables low-loss TE00 mode transmission in straight waveguides(Fig.4),and a bending radius exceeding 5 μm iends to approach TE00 mode losses of approximately 0 dB/cm(Fig.5).By exploring the impact of Ggapmrr on the vernier filter performance(as depicted in Fig.8),it is found that increasing Ggapmrr enhances the SMSR.However,beyond 250 nm,the improvement stabilizes owing to the reduced coupling coefficients,elongating the effective length of the microring resonators.Consequently,the insertion loss increases with increasing Ggapmrr,affecting the efficiency of the filter.The linewidth decreases sharply and levels off,whereas the Q factor exhibits an inverse trend.Above 300 nm,the difference in radius between the microrings significantly influences the Q values and transmission losses.The transmission spectrum of the vernier filter(Fig.9)displays fine fringes and significant changes in the SMSR and full width at half maxima,owing to reflections from the bus waveguide terminator.To address this issue,the proposed multi-mode annular waveguide termination(Fig.10)effectively terminates stray light,with negligible reflected optical power in the waveguide on the order of 10-12W.The vernier filter achieves wavelength tuning through nickel-chromium alloy microheaters atop the microrings,leveraging thermal-optic effects.Simulations in SOI waveguides reveal changes in the effective refractive index of the TE00 mode with temperature at wavelengths of 1.95,2,and 2.05 μm(Fig.11).Utilizing Lumerical device for thermal conduction simulations,the temperature distribution in the circuit under an applied voltage indicates improved efficiency at 4 V,resulting in a temperature increase of 127 K(Fig.13).The study delves into the broad and fine-tuning of a silicon-based tunable laser's external cavity,showing both a wide tuning range of 66 nm(1967-2033 nm)at a 3.2 V bias when using a single microheater and a precise tuning with a 0.1 nm/K accuracy when using two microheaters simultaneously(Figs.14 and 15).Conclusions Research on silicon-based external cavity tunable lasers around the~2 μm wavelength remains limited.Using a 220 nm SOI platform,we simulate and analyze the mode loss characteristics of optical waveguides of various sizes.A designed Si waveguide(600 nm X 220 nm)ensures a low-loss TE00 single-mode transmission in a curved waveguide with a radius exceeding 5 μm.To investigate the impact of a single microring resonator on vernier filter performance,optimal coupling distances are discussed for applications with different requirements.We propose a highly process-compatible multi-mode annular waveguide termination method.Simulations demonstrate a wide 66 nm tuning range and a fine-tuning accuracy of 0.1 nm/K for the designed silicon-based tunable laser.

silicon photonic integrationtunable external cavity diode laserring resonatoroptical waveguide terminator

万浩然、杨禹霖、乔忠良、李翔、Jia Xu Brian Sia、余文军、翁登群、李再金、李林、陈浩、赵志斌、薄报学、高欣、曲轶、刘重阳、汪宏、张宇、牛智川

展开 >

海南师范大学物理与电子工程学院海南省激光技术与光电子功能材料重点实验室,半导体激光海南省国际联合研究中心,海南海口 571158

新加坡南洋理工大学电气与电子工程学院,新加坡 639798

新加坡南洋理工大学淡马锡实验室,新加坡 637553

长春理工大学高功率半导体激光器国家重点实验室,吉林长春 130022

中国科学院半导体研究所半导体超晶格国家重点实验室,北京 100083

展开 >

硅光集成 可调谐外腔半导体激光器 环形谐振腔 光波导终端

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金海南省重点研发计划海南省重点研发计划海南省重点研发计划海南省自然科学基金海南省自然科学基金海南省自然科学基金海南省重大科技计划海南省院士创新平台专项海南省院士创新平台专项海南省高等学校科研项目海南省高等学校科研项目海南省高等学校科研项目

6227404862174046619640076206400461864002ZDYF2020036ZDYF2020020ZDYF2020217622RC671120MS0312019RC190ZD-KJ2019005YSPTZX202034YSPTZX202127Hnky2020-24Hnjg2021ZD-22Hnjg2022ZD-18

2024

中国激光
中国光学学会 中科院上海光机所

中国激光

CSTPCD北大核心
影响因子:2.204
ISSN:0258-7025
年,卷(期):2024.51(6)