首页|基于预测模型的建筑造价控制技术研究——以某建居民住宅项目为案例

基于预测模型的建筑造价控制技术研究——以某建居民住宅项目为案例

扫码查看
为了有效开展建筑工程造价控制工作,对现有的工程造价数据进行挖掘与分析,构建工程造价指标体系.采用先进的自适应神经网络构建工程造价预测模型,完成对项目的造价管理.在成本预测中,改进的遗传算法-反向传播模型(Genetic Algorithm-Bank Propagation Neural Network,GA-BP)相较于传统的反向传播模型(Bank Propagation Neural Network,BP),造价预测准确率提升有29.65%,相较于早期专家预测手段提升 56.98%.可见,所提出的预测模型造价预测精度高,满足于工程造价管理要求.研究内容对建筑施工信息化发展有重要参考价值.
Research on Building Cost Control Technology Based on Predictive Model——Take a residential project as an example
In order to effectively carry out the construction project cost control,the existing project cost data are excavated and analyzed,and the project cost index system is constructed.The advanced adaptive neural network is used to construct the project cost prediction model and complete the project cost management.In the cost prediction,the improved genetic algorithm-Bank Propagation Neural Network(GA-BP)improves the accuracy of cost prediction by 29.65%compared with the traditional bank propagation neural network(BP),and by 56.98%compared with the earlier expert prediction methods.It can be seen that the proposed prediction model has high cost prediction accuracy and meets the requirements of project cost management.The research content has important reference value for the development of building construction informatization.

Project costAdaptive neural networkPrediction modelIndex system

徐徕皓

展开 >

贵安新区产控集团建设管理有限公司

工程造价 自适应神经网络 预测模型 指标体系

2023

中国建设信息化

中国建设信息化

ISSN:
年,卷(期):2023.(12)
  • 11