首页|基于深度学习与数字孪生技术的建筑钢结构检测方法

基于深度学习与数字孪生技术的建筑钢结构检测方法

扫码查看
针对传统建筑钢结构缺陷检测方法效率较低的问题,研究通过特征金字塔网络和逐元素加法对快速区域卷积神经网络进行改进,并将其与数字孪生技术结合,提出了一种基于深度学习与数字孪生技术的建筑钢结构检测方法.结果显示,该方法在不同尺寸下的检测精度分别为0.78、0.81、0.82,证明了其可靠性较高.表明设计的方法能够准确地识别钢构件缺陷,研究结果可应用于建筑物结构健康监控领域,为钢结构风险预警和维护提供有力的技术支持.
Construction Steel Structure Inspection Method Based on Deep Learning and Digital Twin Technology
To address the issue of low efficiency in traditional methods for detecting defects in building steel structures,this research improves the Fast Region Convolutional Neural Network(Fast R-CNN)by using a Feature Pyramid Network(FPN)and element-wise addition.By integrating this with digital twin technology,a detection method for building steel structures based on deep learning and digital twin technology is proposed.The results show that the detection accuracy for different sizes is 0.78,0.81,and 0.82,respectively,proving its high reliability.This indicates that the designed method can accurately identify defects in steel components.The research findings can be applied in the field of structural health monitoring of buildings,providing strong technical support for risk warning and maintenance of steel structuresa.

Building Steel StructureDefect DetectionFast Region Convolutional Neural NetworkDigital Twin Technology

孙晓强、刘皓宇、沙奕、张天辉

展开 >

北京城建集团有限责任公司

建筑钢结构 缺陷检测 快速区域卷积神经网络 数字孪生技术

2024

中国建设信息化

中国建设信息化

ISSN:
年,卷(期):2024.(23)