首页|基于健康因子和混合Bi-LSTM-NAR模型的锂离子电池剩余寿命预测

基于健康因子和混合Bi-LSTM-NAR模型的锂离子电池剩余寿命预测

扫码查看
为准确预测锂离子电池剩余寿命、降低电池工作风险,提出一种新的锂离子电池剩余寿命在线预测模型.基于锂离子电池历史运行数据提取6种健康因子,用于表征电池的退化状态;采用随机森林(RF)算法完成健康因子的评价与筛选;利用经遗传算法优化的广义回归神经网络(GA-GRNN)完成锂离子电池剩余容量的估计.在此基础上,应用结合双向长短期记忆(Bi-LSTM)网络模型和非线性自回归(NAR)神经网络的混合模型(混合Bi-LSTM-NAR模型)预测锂电池剩余寿命.以NASA公开数据集为例完成案例研究,结果表明:通过因子筛选,可以为锂离子电池容量估计及剩余寿命预测的精度提供保障;与已有方法的预测结果相比,所提混合预测模型的预测精度显著提高.
Remaining Useful Life Prediction for Lithium-ion Batteries Based on Health Indicators and Hybrid Bi-LSTM-NAR Model
In order to accurately predict the remaining useful life of lithium-ion batteries and re-duce the risk of battery operations,a novel model was proposed for online remaining useful life predic-tion of lithium-ion batteries.On the basis of historical operation data of lithium-ion batteries,six types of health indicators were extracted to characterize the degradation of batteries.The random for-est(RF)algorithm was adopted to evaluate and screen the health indicators.The generalized regres-sion neural network(GA-GRNN),which was optimized by genetic algorithm,was used to estimate the residual capacity of the battery.Then,a hybrid model combining bidirectional long short-term memory(Bi-LSTM)network model and nonlinear autoregressive(NAR)neural network(hybrid Bi-LSTM-NAR model)was used to predict the remaining useful life for lithium-ion batteries.A case study was conducted with the NASA open data.The results show that by way of screening the indica-tors,the accuracy of capacity estimation and remaining useful life prediction of lithium-ion batteries are ensured.Compared with the prediction results of existing methods,the prediction accuracy of the proposed hybrid prediction model is improved effectively.

lithium-ion batteryhealth indicatorneural networkremaining useful life predition

夏然、苏春

展开 >

东南大学机械工程学院,南京,211189

锂离子电池 健康因子 神经网络 剩余寿命预测

国家自然科学基金机械设备健康维护湖南省重点实验室开放基金

71671035201901

2024

中国机械工程
中国机械工程学会

中国机械工程

CSTPCD北大核心
影响因子:0.678
ISSN:1004-132X
年,卷(期):2024.35(5)
  • 24