首页|铝锂合金回弹预测的机器学习及有限元仿真与实验

铝锂合金回弹预测的机器学习及有限元仿真与实验

扫码查看
分别在180 ℃、190 ℃和200 ℃温度的不同应力条件下对2195铝锂合金进行蠕变时效试验,利用MATLAB软件拟合得到本构方程,并将本构方程整合到非线性有限元软件MSC。Marc中,构建了2195铝锂合金瓜瓣蠕变时效成形的有限元模型,模型以时间、应力和温度为输入参数,回弹半径为关键输出参数。为提高预测精度与效率,对比分析了多种机器学习回归模型,最终选定岭回归模型作为预测工具,实现了对不同工艺条件下回弹半径的快速准确预测。通过1∶1实验验证,实验构件回弹型面与目标型面的相对误差为0。9%,证明了模型的高预测精度和实用价值。
Machine Learning and Finite Element Simulation and Experimentation for Springback Prediction of Al-Li Alloys
Creep aging tests were conducted on the 2195 Al-Li alloys under various stress condi-tions at temperatures of 180 ℃,190 ℃,and 200 ℃ respectively.Constitutive equations were derived using MATLAB software and incorporated into the nonlinear finite element software MSC.Marc to build a finite element model for the creep aging forming of 2195 Al-Li alloy spade segments.The mod-el utilized time,stress,and temperature as input parameters,with the springback radius being the critical output parameter.To enhance the accuracy and efficiency of predictions,a comparative analy-sis of various machine learning regression models was conducted,leading to the selection of the ridge regression model as the predictive tool,which facilitated the rapid and precise prediction of the spring-back radius under diverse processing conditions.The high predictive accuracy and practical utility of the model were validated through 1:1 experimental verification,demonstrating a relative error of 0.9%between the experimental component's springback profile and the target profile.

Al-Li alloycreep aging formingmachine learningfinite element simulation

惠生猛、毛晓博、湛利华

展开 >

中南大学轻合金研究院,长沙,410083

中航西安飞机工业集团股份有限公司,西安,710089

中南大学机电工程学院,长沙,410083

极端服役性能精准制造全国重点实验室,长沙,410083

展开 >

铝锂合金 蠕变时效成形 机器学习 有限元仿真

2024

中国机械工程
中国机械工程学会

中国机械工程

CSTPCD北大核心
影响因子:0.678
ISSN:1004-132X
年,卷(期):2024.35(12)