首页|X射线荧光光谱结合分类算法在铁矿石与含铁物料鉴别中的应用研究

X射线荧光光谱结合分类算法在铁矿石与含铁物料鉴别中的应用研究

Application of X-ray Fluorescence Spectroscopy Combined with Classification Algorithm in the Identification of Iron Ore and Iron-Containing Materials

扫码查看
我国铁矿石贫矿多、富矿少、冶炼成本高的特点,使得我国钢铁行业铁矿石进口量较大,而铁矿石进口过程中以废充矿、以次充好等现象时有发生,对我国生态安全和经济安全造成威胁.因此,建立铁矿石掺假识别模型,快速验证铁矿石固废属性,对支撑进口铁矿石的风险监管、促进贸易便利化、保护生态环境安全具有重要意义.本研究以我国主要进口铁矿石及国内钢铁厂生产过程中产生的含铁物料样本为研究对象,应用波长色散X射线荧光光谱无标样分析法测定样本的元素组成及含量,利用KNN分类算法建立了铁矿石与含铁物料的鉴别模型.使用十重交叉验证方法对模型参数进行调优,并对模型识别能力进行评估,模型查准率、召回率和F1得分均达到1.0,模型对验证样本识别准确率为100%.波长色散X射线荧光光谱无标样分析方法前处理简单且数据稳定性好,该方法结合KNN分类算法,能够实现对进口铁矿石与含铁物料的快速准确识别.
The prevalence of more lean ore,less rich ore and high smelting costs necessitates a substantial import of iron ore for China's iron and steel industry.However,occurrences such as using waste to replace ore and substituting substandard goods for high-quality ones during the importation process pose threats to both the ecological and economic security.Establishing an identification model for iron ore adulteration and promptly verifying the solid waste properties of iron ore are crucial for supporting risk regulation of imported iron ore,promoting trade facilitation,and protecting ecological environment security.This study focuses on samples of imported iron ores and iron-containing materials produced in the production process of steel mills in China.The elemental composition and content of the samples were determined using WDXRF without standard sample analysis,and the KNN classification algorithm is used to establish the identification model of iron ore and iron-containing materials.The tenfold cross-validation method is used to optimize the model parameters and evaluate the model's recognition ability.The model's precision,recall rate and F1 score all reached 1.0,respectively,and the model's recognition accuracy for validation samples is 100%.The WDXRF without standard sample analysis method has the advantage of simple pre-processing and good data stability.Combined with the KNN classification algorithm,this method can achieve fast and accurate identification of imported iron ore and iron-containing materials.

iron oreiron-containing materialX-ray fluorescence spectrometry(XRF)k-nearest neighbors(KNN)

王兵、徐鼎、秦晔琼、闵红

展开 >

上海海关工业品与原材料检测技术中心 上海 200135

铁矿石 含铁物料 X射线荧光光谱 K近邻算法

国家重点研发计划项目

2018YFF0215400

2024

中国口岸科学技术
中国质检报刊社

中国口岸科学技术

影响因子:0.051
ISSN:1002-4689
年,卷(期):2024.6(2)
  • 10