首页|基于深度学习的海关危险化学品数智监管新模式及应用

基于深度学习的海关危险化学品数智监管新模式及应用

扫码查看
加强危险化学品安全监管是当前一项重要工作任务,关系到人民群众的生命健康和国家的经济安全.深度学习通过模拟人脑神经网络的结构和功能,实现了对海量数据的自动学习和分析,为海关危险化学品智慧监管提供了新思路.在服务企业、快速通关、缩短检验流程的大背景下,本文提出构建基于"前端数字化识别+智能化审核+结果感知"的危险化学品数智监管新模式,通过多源化数据资源汇聚、数字化知识经验转化和智能化监管装备研发,AI辅助关员识别研判商品危险性.在大连海关试点应用中,该模式有效提升了关员作业效率和执法专业性,加强了危险化学品监管的有效性和针对性,为海关危险化学品智慧监管改革提供了参考.
The Building and Application of a New Model of Digital Intelligence Supervision and Control of Customs Hazardous Chemicals Based on Deep Learning
Strengthening the safety supervision and control of hazardous chemicals is an important task at present,which is related to the life and health of the people and the economic security of the country.By simulating the structure and function of the human brain neural network,deep learning realizes the automatic learning and analysis of massive data,providing a new perspective for customs intelligent supervision and control of hazardous chemicals.In the context of serving enterprises,accelerating customs clearance and shortening the inspection process,this paper proposes to build a new model of digital intelligence supervision and control of hazardous chemicals based on"front-end digital identification + intelligent review + result perception".Through the aggregation of multi-source data resources,transformation of digital knowledge and experience,and development of intelligent supervision and control equipment,AI assists customs officers in identifying and judging the danger of goods.The successful pilot run in Dalian Customs shows that this model can effectively enhance work efficiency and law enforcement of customs officers,strengthen the effectiveness and pertinence of hazardous chemicals supervision and control,and therefore provide a reference for customs reform of smart supervision and control of hazardous chemicals.

supervision and control of hazardous chemicalsintelligent equipmentcustoms supervision and controldeep learningneural network

马全宇、张茂盛、丁宗超、邴柏春、邓瑞丰、白景莲、梁丽丽、李超

展开 >

大连海关 大连 116001

大连东软信息学院 大连 116001

中国电子口岸数据中心大连分中心 大连 116001

危险化学品监管 智能装备 海关监管 深度学习 神经网络

2024

中国口岸科学技术
中国质检报刊社

中国口岸科学技术

影响因子:0.051
ISSN:1002-4689
年,卷(期):2024.6(4)
  • 11