首页|面向视频卫星的多目标跟踪技术

面向视频卫星的多目标跟踪技术

扫码查看
随着面阵探测器的广泛使用,面向视频卫星的多目标跟踪具有重要意义,但基于图结构的多目标跟踪方法,在图的构建中,大多数从相邻帧提取线索,而忽略了以往帧的线索.针对这个问题,提出了一个端到端的图网络框架,利用从多帧中提取的运动特征、外观特征、拓扑信息等多种线索,对图的节点、边和全局变量进行构建.实现这个统一框架的一个关键原则是为不同的线索和不同的来源(轨迹和检测目标)设计兼容的特征表示和图网络更新机制.该框架以前馈的方式运行,并以在线的方式进行训练.在公共数据集VISO、MOT16、MOT17基准上评测,取得了 99.8%、48.8%、51.8%的多目标跟踪精度,优于其他相关多目标跟踪算法,并通过消融试验验证了各个线索对多目标跟踪性能提高的有效性,未来在智慧交通、智慧城市、军事战争等诸多领域具有广泛应用场景.
A new multi-target tracking method for video satellite data
With the widespread use of area array detectors,multi-target tracking for video satellites has become of great significance.However,for multi-target tracking methods based on graph structure,in the construction of graphs,most of them extract clues from adjacent frames,ignoring the previous frame clues.In response to the above problems,an end-to-end graph network framework was proposed to construct the nodes,edges and global variables of the graph,using various clues such as motion features,appearance features,and topology information extracted from multiple frames.A key principle to realize this unified framework is to design compatible feature representations and graph network update mechanisms for different clues and different sources(trajectories and detection targets).The framework operated in a feed-forward fashion and trained on line.Being evaluated on the public datasets VISO,MOT16,MOT17 benchmarks,the multi-target tracking accuracy of 99.8%,48.8%and 51.8%was achieved respectively,which was better than other related multi-target tracking algorithms.And the ablation experiments were used to verify the improvement that each clue tracks multiple targets.The effectiveness of performance improvement will have a wide range of application scenarios in many fields such as smart transportation,smart cities,and military warfare in the future.

multi-target trackingvideo satellitegraph structurespatiotemporal informationmotion featureappearance feature

陈海涛、马骏、李峰、鹿明、鲁啸天、张南

展开 >

河南大学软件学院,开封 475100

中国空间技术研究院钱学森空间技术试验室,北京 100094

中国航天科技创新研究院先进智能算法中心,北京 100163

多目标跟踪 视频卫星 图结构 时空信息 运动特征 外观特征

科技部重点研发计划国家自然科学基金青年科学基金

2020YFA071410042201442

2024

中国空间科学技术
中国空间技术研究院

中国空间科学技术

CSTPCD北大核心
影响因子:0.404
ISSN:1000-758X
年,卷(期):2024.44(1)
  • 24