首页|基于不同时间尺度的LSTM模型下产品订单需求量的预测

基于不同时间尺度的LSTM模型下产品订单需求量的预测

扫码查看
本文使用LSTM模型对日、周、月三个时间尺度下的产品需求量进行预测。结果表明,采用日尺度模型时,由于时间序列过长,模型无法达到收敛状态,在构建模型时应缩短时间序列;而使用周尺度模型时,损失函数逐渐收敛于横轴,训练效果较为显著;月尺度模型仍有提升空间,需要进一步训练以完全收敛。不同时间尺度会对预测精度产生影响,很大或很小的时间尺度可能导致预测误差增加。
Prediction of Product Order Demand Based on LSTM Models with Different Time Scales
This article uses LSTM models to forecast the demand for products in four sales regions at daily,weekly,and monthly time scales.The results indicate that when using the daily scale model,the time interval is too long for the model to converge,suggesting the need to shorten the interval when building the model.On the other hand,when using the weekly scale model,the loss function gradually converges to the x-axis,indicating a more significant training effect.The monthly scale model still has room for improvement and requires further training for complete convergence.The choice of different time scales has an impact on the accuracy of the predictions,as very short or very long time scales can increase prediction errors.

deep learningLSTM modeltime series prediction

黄玲玲

展开 >

揭阳职业技术学院,广东揭阳 522000

深度学习 LSTM模型 时间序列预测

2024

中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
年,卷(期):2024.(3)
  • 7