首页|基于深度强化学习的机械电气系统智能控制策略研究

基于深度强化学习的机械电气系统智能控制策略研究

扫码查看
本文研究深度强化学习(DRL)在机械电气系统控制领域的应用,旨在克服传统控制方法在处理复杂任务和适应动态环境方面的局限性。对机械电气系统进行详细建模,并设计优化适用于该系统的DRL算法,建立了智能控制系统的架构。实验环境的设计模拟了真实操作条件,确保了数据的质量和准确性,通过数据分析深入解释了实验结果。研究发现,DRL在提升控制精度、适应性和智能化方面表现出明显优势,尤其在处理动态和不确定环境中的复杂控制任务方面。然而,也面临实验与实际应用环境差异、算法稳定性和依赖性等挑战。
Research on Intelligent Control Strategies of Mechanical and Electrical Systems Based on Deep Reinforcement Learning
The application of Deep Reinforcement Learning(DRL)in the field of mechanical and electrical system control aims to overcome the limitations of traditional control methods in dealing with complex tasks and adapting to dynamic environments.Based on this,the mechanical electrical system is modeled in detail,and the DRL algorithm applicable to this system is designed and optimized to establish the architecture of the intelligent control system.The experimental environment is designed to simulate real operating conditions to ensure the quality and accuracy of the data,and the results are explained in depth through data analysis.It is found that DRL shows obvious advantages in improving control accuracy,adaptability and intelligence,especially in handling complex control tasks in dynamic and uncertain environments,however,it also faces challenges such as the differences between experimental and practical application environments,algorithm stability and dependency.

deep reinforcement learningintelligent controlsystem modelingexperimental design

杨涛

展开 >

青岛港 (集团)港务工程有限公司,山东青岛 266500

深度强化学习 智能控制 系统建模 实验设计

2024

中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
年,卷(期):2024.(11)