中国科技纵横2024,Issue(12) :23-25.

强化学习应用下的移动抓取机器人轨迹分析

Mobile Grasping Robot Trajectory under Reinforcement Learning Applications

张续鹏
中国科技纵横2024,Issue(12) :23-25.

强化学习应用下的移动抓取机器人轨迹分析

Mobile Grasping Robot Trajectory under Reinforcement Learning Applications

张续鹏1
扫码查看

作者信息

  • 1. 加州大学戴维斯分校,美国加利福尼亚
  • 折叠

摘要

强化学习是一种通过智能体与环境交互学习最优行为机器学习方法.在移动抓取机器人领域,强化学习算法可以用于优化机器人轨迹,提高其抓取效率和避障能力.基于此,本文介绍了强化学习算法在移动抓取机器人轨迹优化中的应用,并通过实验验证了其有效性.

Abstract

Reinforcement learning is a machine learning method that learns optimal behavior through interaction between agents and the environment.In the field of mobile grasping robots,reinforcement learning algorithms can be used to optimize robot trajectories,improve their grasping efficiency and obstacle avoidance ability.This article introduces the application of reinforcement learning algorithms in trajectory optimization of mobile grasping robots,and its effectiveness was verified through experiments.

关键词

强化学习/机器人轨迹/抓取/优化算法

Key words

reinforcement learning/robot trajectory/grab/optimization algorithm

引用本文复制引用

出版年

2024
中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
段落导航相关论文