首页|基于梯度提升树模型的信息系统信创迁移难度评估

基于梯度提升树模型的信息系统信创迁移难度评估

扫码查看
基于现有预测方法对信息系统信创迁移难度评估受主观因素影响大、准确度不高的问题,本文提出了一种基于梯度提升树模型的预测方法。该方法引入梯度提升树算法,使用完成信创迁移信息系统的数据训练生成信息系统信创迁移难度评估模型,然后将待信创迁移信息系统的数据输入预测模型,实现信创迁移难度的预测。经实验验证,信息系统信创迁移难度评估模型的AUC、精确度、准确率、召回率和F1值等性能数据整体表现优异,其中微平均和宏平均AUC分别达到0。89和0。90。因此,该方法对于信息系统信创迁移难度的预测任务具有重要的实际应用价值,能够辅助决策者做出更准确的信息系统信创迁移策略,最大程度上降低迁移风险和节约迁移成本。
Difficulty Assessment of Information System Migration Based on Gradient Boosting Tree Model
The paper proposes an approach for assessing the difficulty of information system migration in the context of information technology application innovation using a gradient boosting tree model.The method uses data from completed information system migration to train a model for assessing the difficulty of information system migration.Subsequently,data from the information system undergoing migration are input into the prediction model to achieve difficulty prediction.Experimental validation shows that the performance metrics of the information system migration difficulty assessment model,including AUC,precision,accuracy,recall,and F1 score,exhibit excellent overall performance.The micro-average and macro-average AUC values are 0.89 and 0.90,respectively.Therefore,this method holds significant practical value for the task of predicting the difficulty of information system migration in the context of information technology application innovation.It can assist decision-makers in formulating more accurate strategies for information system migration,thereby minimizing migration risks and saving migration costs.

gradient boosting treeinformation technology application innovationdifficulty assessment of information system migration

晏菲、刘超然、刘晨昱、谭震、贾萌

展开 >

中海油信息科技有限公司,北京 102209

梯度提升树 信创 信创迁移难度评估

2024

中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
年,卷(期):2024.(13)