首页|基于Mask R-CNN的排水管网缺陷识别系统研究

基于Mask R-CNN的排水管网缺陷识别系统研究

扫码查看
在基于CCTV的排水管网检测工程中,传统识别方法是利用人工方式对管道内部情况进行辨认和记录,这种方法耗时费力,主要依赖工作人员的经验,难以满足大型项目对质量和速度的要求。针对人工识别效率低这一问题,本文提出了一种基于Mask R-CNN的排水管网缺陷深度学习识别方法,并依此搭建了缺陷识别平台,进一步打标、识别分析了重庆市某区干道区域排水管网缺陷图库及视频。研究结果表明,该方法分类预测准确率达到88。16%,优于同类算法,在排水管网缺陷识别的领域具有一定使用价值和应用前景。
Research on Defect Identification System of Drainage Pipe Network Based on Mask R-CNN
In the CCTV-based drainage pipe network inspection project,the traditional identification method is to identify and record the internal conditions of the pipeline through manual video recording,which is not only time-consuming and labor-intensive,but also heavily reliant on the experience of the staff,making it difficult to meet the requirements of quality and speed for large-scale projects.To address the problem of low efficiency in manual identification,a deep learning method for identifying defects in drainage pipe networks based on Mask R-CNN was proposed,and a defect identification platform was built accordingly.Through labeling and identification analysis of the defect image library and videos of the drainage pipe network in a trunk road area of a district in Chongqing,the results showed that the classification prediction accuracy of this method reached 88.16%,which was better than similar algorithms,indicating that it has great practical value and application prospects in the field of defect identification for drainage pipe networks.

Mask R-CNNdrainage pipe networkdefect identificationdeep learning

王巍、闫宇、常松、赵光帅、宋红亮、王树发

展开 >

正元数字科技研究院,北京 101300

正元地理信息集团股份有限公司,北京 101300

Mask R-CNN 排水管网 缺陷识别 深度学习

2024

中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
年,卷(期):2024.(17)