中国科技纵横2024,Issue(20) :105-107.

航空发动机故障智能检测技术探讨

Discussion on the Intelligent Detection Technology of Aviation Engine Fault

杨朝栋
中国科技纵横2024,Issue(20) :105-107.

航空发动机故障智能检测技术探讨

Discussion on the Intelligent Detection Technology of Aviation Engine Fault

杨朝栋1
扫码查看

作者信息

  • 1. 中国飞行试验研究院,陕西西安 710089
  • 折叠

摘要

本文基于贝叶斯理论的相关向量机(RVM)稀疏概率模型,在遗传算法的支持下,提出了一种航空发动机故障智能检测技术.该技术通过构建故障知识图谱,设计故障模型,并利用遗传算法进行优化训练.与其他常规异常检测技术对比,该智能检测技术展现出较高的精度和较短的检测时间,能够有效提升故障检测效率,尤其适用于航空发动机多故障检测.

Abstract

Based on the Bayesian Theory Correlation Vector Machine (RVM) sparse probability model,this paper proposes an intelligent detection technology for aero engine faults with the support of genetic algorithm.This technology constructs a fault knowledge graph,designs a fault model,and uses genetic algorithm for optimal training.Compared with other conventional anomaly detection technologies,this intelligent detection technology shows high accuracy and short detection time,which can effectively improve the fault detection efficiency,especially for aero engine multi-fault detection.

关键词

航空发动机/故障/智能检测技术

Key words

aero-engine/fault/intelligent detection technology

引用本文复制引用

出版年

2024
中国科技纵横
中国民营科技促进会

中国科技纵横

影响因子:0.102
ISSN:1671-2064
段落导航相关论文