首页|笛卡儿网格高保真虚拟单元浸入边界法研究与应用

笛卡儿网格高保真虚拟单元浸入边界法研究与应用

扫码查看
笛卡儿网格下,物面与网格相切割使得笛卡儿网格具有非贴体特性,物面边界处理成为笛卡儿网格流体仿真的关键.本文建立了一种笛卡儿网格浸入边界法下的高保真虚拟单元模型:合理选取"直角三角形"形式的插值模板点,对壁面外法向附近处的变量进行局部重构,使用双二次插值提高插值精度;根据不同的物面边界类型,构造考虑边界条件信息的高阶多项式,获得虚拟单元的流场值.Prandtl-Meyer流动、超声速圆柱绕流、前台阶问题、NACA0012翼型流动等典型算例考核验证结果表明,此方法模板点选取紧凑、鲁棒,可扩展到不同的边界条件,在L1和L2范数下达到2阶精度.
A novel high-fidelity ghost-cell immersed boundary method for the Cartesian grid and its applications
For Cartesian grid,the object surface is cut with the mesh,giving the Cartesian grid non-body-fitted characteristics.The processing of boundary conditions is crucial for the fluid simulation of the Cartesian grid.In this study,a high-fidelity ghost-cell model has been established for the Cartesian mesh immersed boundary method.A compact interpolation stencil is used for the local reconstruction of variables near the exterior wall surface,and biquadratic interpolation is performed to improve the interpolation accuracy.According to different types of boundary conditions,a high-order polynomial of the surface boundary is constructed to obtain the flow field value of the ghost cell.Typical examples such as Prandtl-Meyer flow,supersonic cylindrical flow,forward-facing step problem,and flow around the NACA0012 airfoil show that the proposed method is compact,robust and scalable to different boundary conditions and achieves second order accuracy in L and L norms.

Cartesian gridimmersed boundaryghost cell method

罗灿炎、周丹、杜昊、毕林、袁先旭、唐志共

展开 >

中南大学交通运输工程学院,轨道交通安全教育部重点实验室,长沙 410075

空天飞行空气动力科学与技术全国重点实验室,绵阳 621000

笛卡儿网格 浸入边界 虚拟单元法

国家重点研发计划国家数值风洞工程项目

2019YFA0405204NNW2018-ZT1A02

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(3)
  • 36