首页|基于关联位错机制的纳米孪晶金属非对称循环塑性模型研究

基于关联位错机制的纳米孪晶金属非对称循环塑性模型研究

扫码查看
纳米孪晶金属在强度、韧性和抗疲劳性能等方面存在优势,具有显著的工程应用价值。纳米孪晶金属的塑性变形机制与传统立方晶系多晶金属材料截然不同,经典力学理论难以精准描述其力学行为,迫切需要针对性地建立力学本构理论。本文基于择优取向纳米孪晶金属塑性变形特有的关联位错机制,结合离散单元模型和位错塞积长程作用效应,提出可描述纳米孪晶金属非对称循环塑性行为的本构模型,并捕捉与历史无关循环塑性行为和Masing现象,描述预加载下长程背应力导致的随动强化现象。进一步根据热力学理论,考虑关联位错与位错长程作用机制,推导了可用于预测疲劳寿命的耗散能量率计算式。本文结果对择优取向纳米孪晶金属的工程应用具有理论参考意义。
Asymmetric cyclic plasticity model in nanotwinned metals based on correlated dislocation mechanism
Nanotwinned metals possess advantages in terms of strength,toughness,and fatigue resistance,demonstrating significant engineering application value.The plastic deformation mechanism of nanotwinned metals is markedly different from that of traditional polycrystalline metals.Classical mechanics theories struggle to accurately describe their mechanical behavior,thereby necessitating the targeted establishment of a constitutive mechanics theory.Therefore,this study combines the discrete element model and dislocation pile-up long-range interaction effect based on the unique correlated dislocation mechanism of nanotwinned metals with preferred orientation.This study proposes a constitutive model that can describe the asymmetric cyclic plastic behavior of nanotwinned metals,capturing the history-independent cyclic plastic behavior and the Masing phenomenon.The model also describes the strain-hardening phenomenon induced by long-range back stress under reloading.Furthermore,a dissipated energy rate formula for predicting fatigue life is derived based on thermodynamic theory and the correlated dislocation and dislocation long-range interaction mechanism.These results offer theoretical significance for the engineering application of nanotwinned metals with preferred orientation.

nanotwinnedcorrelated dislocationsdislocations pile-updissipation energyfatigue life

陈无凡、周昊飞

展开 >

同济大学航空航天与力学学院,上海 200092

浙江大学交叉力学中心,杭州 310027

浙江大学工程力学系,杭州 310027

纳米孪晶 关联位错 位错塞积 耗散能 疲劳寿命

国家自然科学基金国家自然科学基金国家自然科学基金

121023841217232412222210

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(5)