首页|空间引力波探测现状与展望

空间引力波探测现状与展望

Space gravitational wave detection:Progress and outlook

扫码查看
空间引力波探测是依据引力理论推导出的天文动力学方程来探测引力波所引起航天器/天体间距离的改变和/或其状态的变化.基本方法是使用电磁波(包括射电、微波、光波、X光、伽马射线等)多普勒跟踪与发射接收两端的稳定频率标准(源)比对,如微波多普勒跟踪、光钟引力波探测、原子干涉引力波探测和激光干涉引力波探测等.若两端的频率源稳定性不足,则需使用基于多普勒跟踪组合的双路径广义迈克尔逊干涉.现在正在建造、规划的空间引力波探测器主要的是激光干涉仪,涵盖中频(0.1-10 Hz)、与低频(毫赫兹0.1-100 mHz和微赫兹0.1-100 μHz)波段引力波的探测.本文评述这些引力波探测的现况和展望.
Space gravitational wave(GW)detection is to detect and measure the distance change between spacecraft/celestial bodies or status change intra spacecraft/celestial body according to the astrodynamical equations of general relativity or a specific gravitational theory.The basic method is using electromagnetic waves(including radio,microwave,light,X-ray,y-ray,etc.)to Doppler track the spacecraft/celestial body and compare them with the two stable frequency standards(sources)at the emission end and the receiving end,e.g.microwave Doppler tracking,optical clock Doppler tracking,atom-interferometry GW detection,laser-interferomatic GW detection.If the emission phases of the electromagnetic waves are unknown,the statistic Doppler tracking method can be used as in the Pulsar Timing Arrays.If the frequency standards at the emission and the receiving ends are not stable enough in the desired detection frequency band,then it is necessary to exploit the generalized Michelson interferometry based on two paths each consisting of multi-segments of Doppler tracking.In this case,the phase(length metrology)noise at the combination end is proportional to the product of laser source frequency noise times the pathlength difference of the two paths,and the two paths need to be carefully designed and evaluated.Each set of two paths is called a TDI(Time-Dealy Interferometry)configuration.The study of TDI configurations together with the orbit design and the noise requirement at each optical link and the final spacecraft is called TDI interferometry.The final mission products for scientists to use are TDI phase(range)sequences/spectra.These products are also useful for other gravity measurements or testing specific gravitational theories,e.g.measuring gravitomagnetic effects.The current projects under construction and/or study are mainly using this method of generalized Michelson laser-interferometry which includes AMIGO(Astrodynamical Middle-frequency Gravitational Observatory),BBO(Big Bang Observer),B-DECIGO,DECIGO(Deci-Hertz Gravitational Observatory)and DO(Deci-Hertz Observatory)in middle frequency band(0.1-10 Hz),LISA(Laser-Interferometric Space Antenna)and TAIJI/TianQ in the mHz low frequency band(0.1-100 mHz),and ASTROD-GW(Astrodynamical Space Test of Relativity using Optical Devices dedicated for Gravitational wave detection),Folkner's mission,LISAmax,μAries and Super-ASTROD(0.1-100 μHz).In this article,we review the current status quo of these space detection methods and present an outlook.

gravitational wavesspace gravitational wave detectiontime-delay interferometry(TDI)extended Michelson interferometrymilli-Hertz gravitational wavesmicro-Hertz gravitational wavesdeci-Hertz gravitational wavesDoppler trackingoptical clock gravitatio

倪维斗

展开 >

中国科学院大学国际理论物理中心(亚太地区),北京 100190

中国科学院精密测量科学与技术创新研究院,武汉物理与数学研究所,武汉 430071

引力波 空间引力波探测 空间时延干涉 激光迈克尔逊干涉引力波探测 毫赫兹引力波 微赫兹引力波 分赫兹引力波 多普勒跟踪 光钟引力波探测 原子干涉引力波探测

国家重点研发计划

2021YFC2201901

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(7)