首页|集成石墨烯的全介质超表面的光吸收调制和图像显示功能研究

集成石墨烯的全介质超表面的光吸收调制和图像显示功能研究

扫码查看
在单层二维(2D)材料中实现完美吸收对于新一代片上集成光子元器件至关重要。然而,基于表面等离子体共振和法布里-珀罗腔的完全吸收机制存在着调谐能力差,稳定性低以及制备过程复杂等问题。连续体中的束缚态(BICs)被认为是增强光-物质相互作用的理想平台。为此,本文提出了一种在近红外区域支持对称保护的BIC(SP-BIC)的全硅超表面,打破超表面的面内对称性使其转换成具有非凡Q因子的准BIC(qBIC)模式,此时将单层石墨烯引入以组成临界耦合吸收系统。在不改变结构参数的情况下,仅通过控制入射波的偏振角实现了93。8%的光吸收调制效率。基于此石墨烯-超表面理想吸收体,实现了光学数字"0-1"开关和超表面图像显示功能,有望为新一代片上集成光学元器件提供理论指导。
Optical absorption modulation and image display capabilities of all-dielectric metasurface featuring integrated graphene
Perfect absorption in monolayer two-dimensional(2D)materials is critical for the next generation of on-chip devices.However,absorption mechanisms based on surface plasmon polaritons(SPPs)and Fabry-Perot cavities(FPCs)are limited by tuning capability,low stability,and complex fabrication processes.Bound states in the continuum(BICs)are considered ideal platforms for enhancing light-matter interactions.In this context,we propose an all-dielectric metasurface that supports symmetry-protected bound states in the continuum(SP-BIC)in the near-infrared spectral region.By breaking the symmetry of the metasurface,it is transformed into the quasi-bound state in the continuum(qBIC)with exceptional quality factors(Q-factor),while monolayer graphene is introduced into the system to form a critically coupled absorption system.Remarkably,we achieved a modulation efficiency of 93.8%for light absorption by solely controlling the polarization angle of the incident wave without altering the structural parameters.Based on this graphene-metasurface ideal absorber,optical digital"0-1"switching and metasurface image display functionalities have been successfully achieved,and they hold promise to provide theoretical guidance for next-generation integrated optical components on chips.

bound states in the continuumgraphemeoptical absorption modulationimage display

聂国政、谢明鑫、李宗霖、陈智全、李德琼、许辉、兰林锋

展开 >

湖南工商大学微电子与物理学院,长沙 410205

湖南科技大学物理与电子科学学院,湘潭 411201

湖南工商大学理学院,长沙 410205

华南理工大学发光材料与器件国家重点实验室,广州 510640

展开 >

连续体束缚态 石墨烯 光吸收调制 图像显示

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(11)