首页|弯曲声黑洞结构纵弯耦合振动超声手术刀

弯曲声黑洞结构纵弯耦合振动超声手术刀

扫码查看
基于弯曲声黑洞结构独特的声波捕获和聚焦能力,本文提出了一种新型纵弯耦合振动超声手术刀。该手术刀由压电超声换能器、复合变幅杆、竹节刀杆,以及弯曲声黑洞刀头组合而成,其中弯曲声黑洞刀头的厚度与弯曲角度θ呈高次幂律函数关系。利用传输矩阵法和等效电路法构建了弯曲声黑洞刀头和超声手术刀纵弯耦合振动的精确理论分析模型,以揭示潜在的物理机制和设计原理。利用有限元法对理论计算结果进行了初步验证,并将弯曲声黑洞超声手术刀与常规超声手术刀进行了振动和声场对比。结果表明,弯曲声黑洞刀头设计能够显著提升手术刀的振动位移和侧向声能辐射,实现更高效的手术切割和止血。制造了弯曲声黑洞超声手术刀样机,通过电阻抗分析和激光测振实验充分验证了其实际可操作性。
Longitudinal-bending coupled vibration ultrasonic scalpel with curved acoustic black hole structure
Based on the unique capability of curved acoustic black hole to capture and focus sound waves,a novel longitudinal-bending coupled vibration ultrasonic scalpel is proposed.The scalpel consists of a piezoelectric ultrasonic transducer,a composite amplitude converter,a bamboo bar,and a curved acoustic black hole blade.The thickness of the curved acoustic black hole blade is a power law function of the bending angle θ.The precise theoretical analysis models of the longitudinal-bending coupled vibration of the curved acoustic black hole blade and ultrasonic scalpel are constructed using the transmit matrix method and equivalent circuit method,aiming to unveil the underlying physical mechanism and design principle.The finite element method(FEM)is used to validate the theoretical calculations and compare the vibration performance and radiated sound field of the curved acoustic black hole ultrasonic scalpel with that of the conventional ultrasonic scalpel.The results demonstrate that implementing the curved acoustic black hole blade design can significantly enhance vibration displacement and lateral acoustic energy radiation,achieving more efficient surgical cutting and hemostasis.A curved acoustic black hole ultrasonic scalpel prototype is fabricated,and its practical operability was fully validated through electrical impedance analysis and laser vibration measurement experiments.

curved acoustic black hole structureultrasonic scalpellongitudinal-bending coupled vibrationradiant sound field

陈诚、刘洋、郭建中、林书玉

展开 >

陕西师范大学,陕西省超声重点实验室,西安 710119

弯曲声黑洞结构 超声手术刀 纵弯耦合振动 辐射声场

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(12)