首页|基于多模态特征融合的太阳耀斑预报模型

基于多模态特征融合的太阳耀斑预报模型

扫码查看
本文提出了一种基于多模态特征融合的太阳耀斑预报模型STCNet,其输入为太阳光球纵向磁图及其对应的磁场特征参数。该模型旨在使用两者之间的关联信息,充分利用不同模态信息的互补性,以增加训练数据的多样性和丰富性。本文采用了层级式结构以及高效窗口化策略的Swin Transformer来处理太阳光球纵向磁图,在高效提取图片特征的同时减少计算复杂度,采用一维卷积神经网络对磁场特征参数进行特征提取,将两种模态的特征向量融合并输入全连接层进行分类。在主要评估指标中,STCNet模型的F1分数为0。2342、真实技巧统计(TSS)值为0。8251、发生耀斑报准率为0。9227、发生耀斑虚报率为0。0976、AUC值为0。96、模型准确率为90。27%。该模型拥有较高的报准率和较低的虚报率,其预测性能优于以太阳光球纵向磁图为输入的单模态Swin Trransformer模型、深度残差网络(Deep Residual Networks,ResNet)模型,以及与STCNet输入相同的多模态ResNet模型。在与现有文献研究的比较中,STCNet模型的TSS值也有着非常出色的表现。
Solar flare forecasting model based on multi-modal feature fusion
This paper presents STCNet,a solar flare forecasting model based on multi-modal feature fusion.The model's inputs include magnetograms and corresponding magnetic field characteristic parameters.By leveraging the correlation information between these inputs and utilizing the complementary aspects of different modalities,STCNet aims to enhance the diversity and richness of training data.The Swin Transformer,with its hierarchical structure and efficient windowing strategy,is employed to process the magnetograms.This approach allows for efficient extraction of image features while reducing computational complexity.Additionally,a one-dimensional convolutional neural network is used to extract the magnetic field characteristic parameters.The feature vectors from both modalities are then fused and input into a fully connected layer for classification.In terms of key evaluation metrics,the STCNet model achieves an F1 score of 0.2342,a true skill statistic(TSS)value of 0.8251,a true positive rate of 0.9227,a false positive rate of 0.0976,an AUC value of 0.96,and an overall accuracy of 90.27%.These results indicate a high true positive rate and a low false positive rate for flare occurrence,demonstrating superior predictive performance compared to the single-modal Swin Transformer model and the Deep Residual Networks(ResNet)model using magnetograms as input.Additionally,STCNet outperforms the multi-modal ResNet model with the same inputs.Compared to existing studies,the STCNet model also shows remarkable performance in terms of the TSS value.

solar flare predictiondeep learningmuti-modalSwin Transformer model

李蓉、吴颖智、田奇辉、黄鑫

展开 >

北京物资学院信息学院,北京 101149

宁波大学信息科学与工程学院,宁波 315211

太阳耀斑预报 深度学习 多模态 Swin Transformer模型

2024

中国科学(物理学 力学 天文学)
中国科学院

中国科学(物理学 力学 天文学)

CSTPCD北大核心
影响因子:0.644
ISSN:1674-7275
年,卷(期):2024.54(12)