首页|Some properties of Melnikov functions near a cuspidal loop

Some properties of Melnikov functions near a cuspidal loop

扫码查看
In this paper,we consider the first-order Melnikov functions and limit cycle bifurcations of a near-Hamiltonian system near a cuspidal loop.By establishing relations between the coefficients in the expansions of the two Melnikov functions,we give a general method to obtain the number of limit cycles near the cuspidal loop.As an application,we consider a kind of Liénard systems and obtain a new estimation on the lower bound of the maximum number of limit cycles.

Melnikov functionnilpotent cusplimit cyclebifurcation

Junmin Yang、Maoan Han

展开 >

School of Mathematical Sciences,Hebei Normal University,Shijiazhuang 050024,China

Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China

国家自然科学基金国家自然科学基金国家重点研发计划

11971145119310162022YFA1005900

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(4)
  • 28