首页|Quantitative Green's function estimates for lattice quasi-periodic Schr?dinger operators

Quantitative Green's function estimates for lattice quasi-periodic Schr?dinger operators

扫码查看
In this paper,we establish quantitative Green's function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrödinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green's function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Hölder continuity of the integrated density of states(IDS)for such QP Schrödinger operators.This gives an affirmative answer to Bourgain's problem in Bourgain(2000).

Hölder continuity of the IDSquantitative Green's function estimatesquasi-periodic Schrödinger operatorsarithmetic Anderson localizationmulti-scale analysis

Hongyi Cao、Yunfeng Shi、Zhifei Zhang

展开 >

School of Mathematical Sciences,Peking University,Beijing 100871,China

School of Mathematics,Sichuan University,Chengdu 610064,China

National Natural Science Foundation of ChinaNational Key R&D ProgramNational Natural Science Foundation of ChinaNational Natural Science Foundation of China

122713802021YFA10016001217101012288101

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(5)