首页|On n-universal quadratic forms over dyadic local fields

On n-universal quadratic forms over dyadic local fields

扫码查看
Let n≥2 be an integer.We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also,we provide a minimal set for testing n-universal quadratic forms over dyadic local fields,as an analogue of Bhargava and Hanke's 290-theorem(or Conway and Schneeberger's 15-theorem)on universal quadratic forms with integer coefficients.

integral quadratic formsn-universal quadratic formsdyadic fields290-theorem

Zilong He、Yong Hu

展开 >

School of Computer Science and Technology,Dongguan University of Technology,Dongguan 523808,China

Department of Mathematics,Southern University of Science and Technology,Shenzhen 518055,China

National Natural Science Foundation of ChinaGuangdong Basic and Applied Basic Research Foundation

121712232021A1515010396

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(7)