首页|Matrix orthogonal polynomials,non-abelian Toda lattices,and B?cklund transformations

Matrix orthogonal polynomials,non-abelian Toda lattices,and B?cklund transformations

扫码查看
A connection between matrix orthogonal polynomials and non-abelian integrable lattices is investigated in this paper.The normalization factors of matrix orthogonal polynomials expressed using quasi-determinants are shown to be the solutions to the non-abelian Toda lattice in semi-discrete and full-discrete cases.Moreover,with a moment modification method,we demonstrate that the Bäcklund transformation of the non-abelian Toda lattice given by Popowicz(1983)is equivalent to the non-abelian Volterra lattice,whose solutions can be expressed using quasi-determinants as well.

matrix orthogonal polynomialnon-abelian Toda latticeBäcklund transformationquasi-determinant technique

Shi-Hao Li

展开 >

Department of Mathematics,Sichuan University,Chengdu 610064,China

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of China

121014321217515511971322

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(9)