首页|Aubry-Mather theory for contact Hamiltonian systems Ⅲ

Aubry-Mather theory for contact Hamiltonian systems Ⅲ

扫码查看
By exploiting the contact Hamiltonian dynamics(T*M × R,Φt)around the Aubry set of contact Hamiltonian systems,we provide a relation among the Mather set,the Φt-recurrent set,the strongly static set,the Aubry set,the Mané set,and the Φt-non-wandering set.Moreover,we consider the strongly static set,as a new flow-invariant set between the Mather set and the Aubry set in the strictly increasing case.We show that this set plays an essential role in the representation of certain minimal forward weak Kolmogorov-Arnold-Moser(KAM)solutions and the existence of transitive orbits around the Aubry set.

Aubry-Mather theoryweak KAM theorycontact Hamiltonian systemsHamilton-Jacobi equations

Panrui Ni、Lin Wang

展开 >

Shanghai Center for Mathematical Sciences,Fudan University,Shanghai 200433,China

School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(11)