首页|Verdier quotients of homotopy categories of rings and Gorenstein-projective precovers

Verdier quotients of homotopy categories of rings and Gorenstein-projective precovers

扫码查看
Let R be a ring,Proj be the class of all the projective right R-modules,κ be the full subcategory of the homotopy category K(Proj)whose class of objects consists of all the totally acyclic complexes,and Morκbe the class of all the morphisms in K(Proj)whose cones belong to κ.We prove that if K(Proj)has enough Morκ-injective objects,then the Verdier quotient K(Proj)/κ has small Hom-sets,and this last condition implies the existence of Gorenstein-projective precovers in Mod-R and of totally acyclic precovers in C(Mod-R).

homotopy categoryGorenstein-projective precoverVerdier quotientsmall Hom-setstotally acyclic complex

Manuel Cortés-Izurdiaga

展开 >

Departamento de Matemática Aplicada,Universidad de Málaga,Málaga 29071,Spain

2024

中国科学:数学(英文版)
中国科学院

中国科学:数学(英文版)

CSTPCD
影响因子:0.36
ISSN:1674-7283
年,卷(期):2024.67(12)