首页|Carbon density and distribution of six Chinese temperate forests
Carbon density and distribution of six Chinese temperate forests
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
Quantifying forest carbon (C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling. Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age (42-59 years old) and growing under the same climate in northeastern China. The forests were an aspen-birch forest, a hardwood forest, a Korean pine plantation, a Dahurian larch plantation, a mixed deciduous forest, and a Mongolian oak forest. There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had varying vegetation compositions and site conditions. However, the differences were significant when the C pools were normalized against stand basal area. The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests. The C densities of vegetation, detritus, and soil ranged from 86.3-122.7 tC hm-2, 6.5-10.5 tC hm-2, and 93.7-220.1 tC hm-2, respectively, which accounted for 39.7% ± 7.1% (mean ± SD), 3.3% ± 1.1%, and 57.0% ± 7.9% of the total C densities, respectively. The overstory C pool accounted for > 99% of the total vegetation C pool. The foliage biomass, small root (diameter < 5mm) biomass, root-shoot ratio, and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2, 0.95-3.24 tC hm-2, 22.0%-28.3%, and 34.5%-122.2%, respectively. The Korean pine plantation had the lowest foliage production efficiency (total biomass/foliage biomass: 22.6 g g-1) among the six forests, while the Dahurian larch plantation had the highest small root production efficiency (total biomass/small root biomass: 124.7 g g-1). The small root C density decreased with soil depth for all forests except for the Mongolian oak forest, in which the small roots tended to be vertically distributed downwards. The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests. The variability of C allocation patterns in a specific forest is jointly influenced by vegetation type, management history, and local water and nutrient availability. The study provides important data for developing and validating C cycling models for temperate forests.
biomasscarbon storagecarbon poolcarbon allocationroot-shoot ratio
ZHANG QuanZhi、WANG ChuanKuan
展开 >
College of Forestry, Northeast Forestry University, Harbin 150040, China
This research was financially supported by the grants from the National Natural Science Foundation of ChinaSpecial Research Program for Public-welfare ForestryMinistry of Science and Technology of China