Abstract
Lake-level changes can significantly affect paleoenvironmental evolution,resource occurrence,terrestrial carbon budget,and biodiversity in continental basins.Climate is one of the most critical factors controlling lake-level changes.Paleoclimate of the Early Jurassic has been evidenced by oscillating icehouses to(super)greenhouses with interrupted inter-mittent extreme climatic events(hyperthermal and cooling),e.g.,the Toarcian oceanic anoxic event(~183 Ma)and the late Pliensbachian cooling event(~185 Ma).Lake-level evolution and hydrologic cycling on Earth's surface during the Early Jurassic icehouses-to-(super)greenhouses are thus far poorly understood due to a lack of continuous high-resolution nonmarine evidence.Here we present a super-long nonmarine lake level record for this pivotal interval from the early Pliensbachian to Toarcian by sedimentary noise modeling,and construct a 16.7-Myr-long astronomical time scale(174.2 Ma to 190.9 Ma)based on cy-clostratigraphy analysis of rock color datasets(CIE b*)of the Qaidam Basin.Our results document lake-level oscillations on a 5-to 10-million-year(Myr)scale which shows a pronounced correlation with long-term climate variation and extreme climatic events,and 1-to 2.5-Myr-scale lake-level changes that are prominently paced by the 2.4-Myr long-eccentricity forcing and the 1.2-Myr obliquity forcing.At the Pliensbachian Stage,the 1.2-Myr-scale lake-level changes are in phase with the coeval sea-level variations.Orbitally forced growth and decay of the ephemeral or permanent ice sheets in polar regions are interpreted to control the synchronous ups-and-downs of continental lake level and global sea level.However,during the Toarcian ice-free greenhouses to(super)greenhouses,the 1.2-Myr-scale lake-level variations show an anti-phase relationship with global sea level,indicating a'seesaw'interaction between continental reservoirs(lakes and groundwater)and global oceans.The 2.4-Myr long-eccentricity cycles mainly regulate variations of lake level and sea level by controlling the growth and decay of small-scale continental ice sheets,which is especially notable during the Pliensbachian Stage.These findings indicate a remarkable transition of hydrological cycling pattern during the Pliensbachian-Toarcian icehouses to(super)greenhouses,which provides new per-spectives and evidence for investigating the hypothesis of global sea-level changes(e.g.,glacio-eustasy and aquifer-eustasy)and long-period astronomical forcing in nonmarine stratigraphy.
基金项目
National Natural Science Foundation of China(41502108)
National Natural Science Foundation of China(42372206 & 41602123)
China Postdoctoral Science Foundation(2016T90667)
China Scholarship Council Project(201907770004)
Fundamental Research Funds for the Universities of Henan Province(NSFRF220401)