首页|Design and performance investigation of modified dual reflector parabolic trough collector with double planar mirrors

Design and performance investigation of modified dual reflector parabolic trough collector with double planar mirrors

扫码查看
In a typical parabolic trough collector(PTC),sunlight is concentrated at the bottom of the absorber tube.This concentrated solar flux leads to uneven heat distribution,resulting in high local temperatures and significant thermal stress on the absorber tube.These limitations have restricted the application of PTCs in solar thermochemistry and other fields and have impacted their safe operation.In this study,a new PTC with dual planar mirrors(DPMS)is proposed to homogenize the circumferential solar flux distribution of the absorber tube.A design method and single-objective optimization of the new PTC with a DPMS are proposed,and an uncertainty analysis of the operational and structural parameters is performed.A coupled light-heat-structure numerical model was developed to study the heat transfer performance and structural mechanical properties.The thermodynamic properties of the PTC with DPMS under different boundary conditions were analyzed.The results show that the circumferential tem-perature difference of the new PTC is within 2.6 K,and the circumferential thermal deformation is within 0.9 mm under typical working conditions(the inlet velocity of the heat transfer fluid is 3 m/s,inlet temperature is 573.15 K,and the direct normal irradiance is 1000 W/m2).Compared with conventional PTCs,the circumferential temperature difference is reduced by 74%-90%,and the maximum thermal deformation along the y-axis is reduced by more than 95%under all working conditions(1-5 m/s,373.5-675.15 K,200-1000 W/m2).The new PTC maintains the uniformity of the circumferential solar flux dis-tribution for different operating parameters(sun incident angle of 0°-3°)and installation errors(±3 mm),is suitable for solar energy applications in various fields,and has the potential for large-scale applications.

solar thermal energyparabolic trough collectorsecondary reflectorsolar flux distributionoptical optimization

LI PeiJing、LIU TaiXiu、QIN YuanLong、LI JiChao、LIU QiBin

展开 >

School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China

Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China

University of Chinese Academy of Sciences,Beijing 100049,China

Department of Thermal Science and Energy Engineering,University of Science and Technology of China,Hefei 230027,China

展开 >

Distinguish Young Scholars of the National Natural Science Foundation of China国家自然科学基金重大项目

5222560152090061

2024

中国科学:技术科学(英文版)
中国科学院

中国科学:技术科学(英文版)

CSTPCDEI
影响因子:1.056
ISSN:1674-7321
年,卷(期):2024.67(3)
  • 52