中国科学:技术科学(英文版)2024,Vol.67Issue(4) :1270-1281.DOI:10.1007/s11431-023-2528-8

Multispectral point cloud superpoint segmentation

WANG QingWang WANG MingYe ZHANG ZiFeng SONG Jian ZENG Kai SHEN Tao GU YanFeng
中国科学:技术科学(英文版)2024,Vol.67Issue(4) :1270-1281.DOI:10.1007/s11431-023-2528-8

Multispectral point cloud superpoint segmentation

WANG QingWang 1WANG MingYe 1ZHANG ZiFeng 1SONG Jian 1ZENG Kai 1SHEN Tao 1GU YanFeng2
扫码查看

作者信息

  • 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology Kunming 650500,China;Yunnan Key Laboratory of Computer Technologies Application,Kunming 650500,China
  • 2. School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China
  • 折叠

Abstract

The multitude of airborne point clouds limits the point cloud processing efficiency.Superpoints are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing efficiency.However,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a superpoint.Such feature inconsistencies degrade the performance of subsequent tasks.Thus,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral in-formation is proposed to facilitate the consistency of geometric structures and object attributes within segmented superpoints.Following the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is proposed.Experiments are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification errors.The experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.

Key words

multispectral point cloud/superpoint segmentation/over-segmentation/spatial-spectral joint metric

引用本文复制引用

基金项目

国家自然科学基金青年基金(62201237)

Yunnan Fundamental Research Projects(202101BE070001-008)

Yunnan Fundamental Research Projects(202301A V070003)

Youth Project of the Xingdian Talent Support Plan of Yunnan Province(KKRD202203068)

Major Science and Technology Projects in Yunnan Province(202202AD080013)

出版年

2024
中国科学:技术科学(英文版)
中国科学院

中国科学:技术科学(英文版)

CSTPCDEI
影响因子:1.056
ISSN:1674-7321
参考文献量37
段落导航相关论文