中国科学:技术科学(英文版)2024,Vol.67Issue(11) :3585-3596.DOI:10.1007/s11431-024-2774-2

Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction

NIU MaoGui JIANG HongKai YAO RenHe
中国科学:技术科学(英文版)2024,Vol.67Issue(11) :3585-3596.DOI:10.1007/s11431-024-2774-2

Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction

NIU MaoGui 1JIANG HongKai 1YAO RenHe1
扫码查看

作者信息

  • 1. School of Civil Aviation,Northwestern Polytechnical University,Xi'an 710072,China
  • 折叠

Abstract

Currently,accurately extracting early-stage bearing incipient fault features is urgent and challenging.This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AMWPSR)to address this issue.For the first time,the dual-tree complex wavelet transform is applied to construct the linear transformation for the AMWPSR model.This transform offers superior shift invariance and minimizes spectrum aliasing.By integrating this linear transformation with the generalized minimax concave penalty term,a new sparse representation model is developed to recover faulty impulse components from heavily disturbed vibration signals.During each iteration of the AMWPSR process,the impulse periods of sparse signals are adaptively estimated,and the periodicity of the latest sparse signal is augmented using the final estimated period.Simulation studies demonstrate that AMWPSR can effectively estimate periodic impulses even in noisy environments,demonstrating greater accuracy and robustness in recovering faulty impulse components than existing techniques.Further validation through research on two sets of bearing life cycle data shows that AMWPSR delivers superior fault diagnosis results.

Key words

incipient fault feature extraction/dual-tree complex wavelet transform/generalized minimax concave penalty/periodic sparse representation

引用本文复制引用

出版年

2024
中国科学:技术科学(英文版)
中国科学院

中国科学:技术科学(英文版)

CSTPCDEI
影响因子:1.056
ISSN:1674-7321
段落导航相关论文