Abstract
To ensure the battery works in a suitable temperature range,a new design for distributed liquid cooling plate is proposed,and a battery thermal management system(BTMS)for cylindrical power battery pack based on the proposed cooling plate is also investigated.To verify the accuracy of the battery model and battery pack numerical calculation model used for simulation,an experiment is conducted for the liquid cooling BTMS.The influence of key working parameters,including the cooling water inlet flow,ambient temperature and working conditions,are investigated.The results show that at the discharge rate of 3 C,the best cooling performance can be achieved when the total inlet mass flow rate is 3.2 g/s and the flow distribution is 3:1:1:3.The obtained maximum temperature is 29.6℃ and the maximum temperature difference is 2.1℃.When the ambient temperature is in the range of 20℃ to 50℃,the proposed BTMS can keep the temperature of battery pack in the proper range.Finally,different inlet flow rates are recommended according to different battery working states.