首页|多源异构感知数据融合方法及其在目标定位跟踪中的应用

多源异构感知数据融合方法及其在目标定位跟踪中的应用

扫码查看
物联网的全面感知产生了海量的感知数据,并且感知数据呈现为显著的多源异构性.因此,如何实现海量多源异构感知数据的智能处理是一个具有挑战性的课题.数据融合是处理多模态数据并挖掘提取有价值信息的有效手段,但针对多源异构数据,特别是非结构化的视频多媒体信息,如何实现高效的融合计算还面临许多问题需要解决.本文针对物联网多源异构感知信息的处理问题,提出多层次的多源异构数据融合方法,并以基于无线信号、视频和深度感知数据的目标定位跟踪应用为切入点,重点研究多源异构数据的处理、特征表示和数据融合方法.根据不同类型数据的特性采用不同的数据融合方法,通过挖掘无线信号、视频和深度等多源异构数据内在的关联性,实现多源异构数据有价值信息的有效利用.实际复杂场景的实验表明,本文提出的基于多源异构数据融合的目标跟踪和定位方法,能够解决传统依赖单源同质数据的目标跟踪方法所面临的光照变化和遮挡交错等难点问题,并且可以获得较为准确的运动目标三维位置,具有良好的跟踪定位效果.
Multi-source heterogeneous data fusion method and its application in object positioning and tracking
The general sensing of Internet of Things (IoT) brings magnanimous sensing data,which shows significant multi-source heterogeneous property.How to process the multi-sourceheterogeneous sensing data intelligently and efficiently is a challenging problem.Although data fusion is considered an effective approach to processing multi-modal data and extract the hiding valuable information,there are many problems to be solved for multi-source heterogeneous data fusion,especially the unstructured video multimedia information.In this paper,the multi-source heterogeneous data fusion problem is explored and a multi-level fusion method is proposed and applied in object positioning and tracking using wireless signal,video and depth data.In the proposed method,the main opponents of data fusion are deeply studied,including the processing methods of different types of data,the feature representation and different level data fusion methods.For different types of data,from their inherent characteristics,different fusion methods at different levels are adopted here to mine the correlative relations and derive the valuable information of the heterogeneous data.The proposed method is evaluated by the object tracking and positioning experiments in actual complicated scenarios.The results show that the proposed multi-source heterogeneous data fusion based method can solve the difficulties in the traditional single dada based tracking method,such as the illumination variation,occlusion and the clutter of background.Additionally,the proposed method can estimate the three-dimensional position of the tracking object with high accuracy.

multi-source heterogeneousinformation fusiontracking and positioningfeature representationInternet of Things

胡永利、朴星霖、孙艳丰、尹宝才

展开 >

北京工业大学计算机学院多媒体与智能软件北京市重点实验室,北京100124

多源异构 信息融合 跟踪定位 特征表示 物联网

2011CB30270361133003,611711694132013,KZ201310005006

2013

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCDCSCD
影响因子:1.438
ISSN:1674-5973
年,卷(期):2013.43(10)
  • 15
  • 44