首页|分心感知的伪装物体分割

分心感知的伪装物体分割

扫码查看
本文致力于设计一个有效且高效的伪装物体分割(camouflaged object segmentation,COS)模型。为此,本文开发了 一个生物启发的框架,称为金字塔定位和聚焦网络(pyramid positioning and focus network,PFNet+),其模仿了自然界中的捕食过程。具体地,本文的PFNet+包含3个关键模块,即上下文增强模块(context enrichment,CEn)、金字塔定位模块(pyramid positioning module,PPM)和聚焦模块(focus module,FM)。CEn通过整合上下文信息来增强骨干特征的表征能力,从而提供更有辨别性的骨干特征。PPM模仿捕食中的检测过程,以金字塔的方式从全局的角度定位潜在的目标物体。然后FM执行捕食中的识别过程,通过在歧义区域的聚焦逐步细化初始的预测结果。值得注意的是,在FM中,本文开发了一个新颖的分心挖掘策略,用于分心区域的发现和去除,以提高预测的性能。大量的实验证明本文的PFNet+能够实时运行(56 fps),在4个标准度量指标下,PFNet+在3个具有挑战性的数据集上都显著优于现有的20个最新模型,在其他视觉任务(如息肉分割)上的实验进一步证明了 PFNet+的泛化能力。
Distraction-aware camouflaged object segmentation
In this work,our goal is to design an effective and efficient camouflaged object segmentation(COS)model.To this end,we develop a bio-inspired framework,termed pyramid positioning and focus network(PFNet+),which mimics the process of predation in nature.Specifically,our PFNet+contains three key modules,i.e.,a context enrichment(CEn)module,a pyramid positioning module(PPM),and a focus module(FM).The CEn aims at enhancing the representation ability of backbone features via integrating contextual information for providing more discriminative backbone features.The PPM is designed to mimic the detection process in predation for positioning the potential target objects from a global perspective in a pyramid manner and the FM is then used to perform the identification process in predation for progressively refining the initial prediction via focusing on the ambiguous regions.Notably,in the FM,we develop a novel distraction mining strategy for distraction discovery and removal,to benefit the performance of estimation.Extensive experiments demonstrate that our PFNet+runs in real-time(56 fps)and outperforms 20 cutting-edge models on three challenging datasets under four standard metrics.The generalization capability of our PFNet+is further demonstrated by the experiments on the other vision task(i.e.,polyp segmentation).

camouflaged objectdistractioncontext enrichmentcontext explorationpyramidsegmentation

梅海洋、杨鑫、周运铎、季葛鹏、魏小鹏、范登平

展开 >

大连理工大学社会计算与认知智能教育部重点实验室,大连116024,中国

School of Computing,Australian National University,Canberra 2601,Australia

南开大学国际先进研究院(深圳福田),计算机学院,天津 300350,中国

伪装物体 分心 上下文增强 上下文探索 金字塔 分割

国家重点研发计划国家自然科学基金国家自然科学基金大连市杰出青年科学基金

2022ZD021050061972067U21A204912022RJ01

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(3)
  • 103