首页|基于信息论的智能驾驶可解释多模态感知

基于信息论的智能驾驶可解释多模态感知

扫码查看
智能驾驶汽车已成为人们关注的热点话题之一。然而,现有的智能驾驶技术仍面临一系列挑战,如交通障碍物的遮挡所引起的模型漏检,以及当汽车驶入隧道等光线骤变的场景时所引起的传感器感知精度下降导致的误检问题等。为保证复杂场景下车辆的感知安全,智能驾驶多模态感知技术应运而生。然而,现有的多模态融合方法仍局限于对检测精度的提升,缺乏感知过程的可解释性,并缺少对模型感知过程的评价指标。本文从信息论角度出发,按照通信模型的构建方法对感知模型进行设计,提出了 一种基于信源信道联合编码理论的多模态融合感知模型,从理论上对模型的感知过程进行解释。同时,提出了一种新的评价指标——平均信息熵变(average entropy variation,AEV),用AEV来实时反映模型与外界感知交互过程中的稳定性。进而,对多模态模型的感知过程进行量化分析,增加模型的可解释性。最后,与其他的感知模型在KITTI数据集的评估结果进行比较,我们的模型在经过相似的网络结构时平均信息熵变下降到0。5904,更好地保证了检测任务的感知安全。
Information-theoretic-based interpretable multimodal perception for intelligent vehicles
Intelligent driving has become one of the most compelling topics of interest.Nevertheless,current intelligent driving technologies still face challenges,such as missed detection due to large vehicle occlusion and false detection caused by sensor accuracy degradation in sudden light changes.Multimodal perception technology for intelligent vehicles has emerged to ensure the safety of vehicle perception in complex scenarios.However,the existing multimodal fusion methods are still limited to the improvement of detection accuracy,lack of interpretability of the perception process and lack of evaluation indexes for the model perception process.In this paper,from the information theory perspective,we design the perception model according to the communication model.We propose a multimodal fusion perception model based on joint source-channel coding theory to explain the perception process of the model theoretically.At the same time,we propose a new evaluation index,average entropy variation(AEV),which is used to reflect the stability of the model during its perceptual interaction with the outside world in real time.Further,the perceptual process is quantified and analyzed to increase the interpretability of the model.Finally,we compare the evaluation results with other advanced perceptual models in the KITTI dataset,and our model decreases the average entropy variation to 0.5904,which better ensures the perceptual safety of the detection task.

interpretabilitytheory of informationjoint source-channel codingmultimodal fusionintelligent driving

张新钰、国纪龙、李骏、李德毅、张世焱、沈思甜、吴凡、刘华平

展开 >

清华大学智能绿色车辆与交通全国重点实验室,北京 100084

北京航空航天大学交通学院,北京 100191

清华大学车辆与运载学院,北京 100084

清华大学计算机科学与技术系,北京 100084

展开 >

可解释性 信息论 信源信道联合编码 多模态融合 智能驾驶

国家重点研发计划国家自然科学基金国家自然科学基金

2018YFE020430062273198U1964203

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(6)