首页|非平稳过程异常监测方法:综述与展望

非平稳过程异常监测方法:综述与展望

扫码查看
实际工业过程受多种因素(如原材料变化、负载波动、设备老化等)的影响,往往表现出非平稳特性,即过程监测数据统计特性随时间发生变化,因此非平稳过程异常监测备受关注并已成为监测领域的焦点之一。本文从监测方法的角度对非平稳过程异常监测相关研究成果进行了系统性的回顾:首先对非平稳过程的概念和技术难点进行了概述;其次,将非平稳过程监测方法根据原理的差异划分为五大类,并总结了各类方法的优点与不足;最后,结合当前技术发展的现状,对非平稳过程研究中的挑战进行了深入分析与展望。
Overview and prospect of abnormal monitoring methods for non-stationary processes
The actual industrial processes are often affected by various factors,such as changes in raw materials,fluctuations in workload,and aging equipment.These processes show non-stationary characteristics,meaning that the statistical properties of the data used to monitor them change over time.This has led to a significant focus on monitoring non-stationary processes in the field of process monitoring.This paper presents a systematic review of research achievements in non-stationary process anomaly monitoring,focusing on the different monitoring methods.It first explains the concept of non-stationary processes and the technical challenges associated with them.Then,it categorizes non-stationary process monitoring methods into five major types based on their principles.The paper then summarizes the advantages and limitations of each type of method.Finally,it conducts an in-depth analysis of the current state of technological development and provides an outlook on the challenges in non-stationary process monitoring.

non-stationary processesprocess monitoringadaptive modelingcointegration analysisstationary subspace analysisslow feature analysisdeep learning

王敏、冯智彬、吴德浩、张景欣、周东华

展开 >

电子科技大学自动化工程学院,成都 611731

中南大学自动化学院,长沙 410083

东南大学自动化学院,南京 210096

山东科技大学电气与自动化工程学院,青岛 266000

清华大学自动化系,北京 100018

展开 >

非平稳过程 过程监测 自适应建模 协整分析 平稳子空间分析 慢特征分析 深度学习

国家自然科学基金项目国家自然科学基金项目

6230309062033008

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(8)