首页|风电场分布式经济模型预测控制

风电场分布式经济模型预测控制

扫码查看
随着风电场规模的不断扩大,尾流效应导致场内下游风机发电功率降低和疲劳载荷加剧问题日益严重。为了降低风电场运营成本,提高动态经济性能,本文提出了一种风电场分层控制结构。在上层通过优化全场风机的诱导因子实现当前风向下的全场最大风能捕获,为下层本地控制提供各机组的最佳降载跟踪功率基准。在下层采用基于终端区域约束的稳定分布式经济模型预测控制策略对各风机实施本地控制,在保证满足电网负荷需求的同时有效降低机组的疲劳载荷,提高风电场的动态经济性。最后,通过SimWindFarm软件对由9台风机组成的风电场进行仿真实验,验证了风向变化、阶跃风速扰动和湍流风速扰动3种情况下所设计控制策略的有效性。
Distributed economic model predictive control of wind farms
With the continuous expansion of the scale of wind farms,the wake effect leads to the problem of reduced power generation and increased fatigue load of downstream wind turbines in the farm,which is becoming increasingly serious.To reduce the operating cost of wind farms and improve dynamic economic performance,this paper proposes a hierarchical control structure for wind farms.At the upper level,the maximum wind energy capture of the entire farm under the current wind direction is achieved by optimizing the induction factor of the wind turbines in the entire farm,providing the optimal load reduction tracking power benchmark for each turbine for the local control of the lower layer.At the lower level,a stable distributed economic model predictive control strategy based on terminal area constraints is used to implement local control of each wind turbine,ensuring that the load demand of the power grid is met while effectively reducing the fatigue load of the turbine and improving the dynamic economy of the wind farm.Finally,a wind farm consisting of nine wind turbines was simulated by SimWindFarm software to verify the effectiveness of the designed control strategy under three conditions:wind direction change,step wind speed disturbance,and turbulent wind speed disturbance.

wind farm controlwake effectfatigue loaddistributed economic model predictive controlsequential convex programming

孔小兵、王文文、刘向杰

展开 >

华北电力大学新能源电力系统全国重点实验室,北京 102206

西安西电电力系统有限公司,西安 710065

风电场控制 尾流效应 疲劳载荷 分布式经济模型预测控制 凸序列规划

国家重点研发计划国家自然科学基金中央高校基本科研业务费专项资金中央高校基本科研业务费专项资金

2021YFE0190900620731362023JC0022023YQ002

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(9)