首页|基于状态分解的网络化系统分布式状态估计

基于状态分解的网络化系统分布式状态估计

扫码查看
本文研究了离散时间网络化系统的分布式状态估计问题,提出了一种基于状态分解的新型分布式状态估计方法。通过解耦系统的能观状态分量,网络中各传感器节点可独立估计对应分量,实现了估计方法的完全分布式设计。针对网络信息传输冗余问题,建立了状态预测值扩散策略,各传感器仅需向外传输其能观状态分量的预测值,大幅降低了传感器网络各节点的计算与通信资源消耗。为证明本文所设计估计方法的误差协方差有界性,构造了紧凑形式误差协方差迭代式,得到了协方差存在上下界的充分条件。最后,通过仿真在估计精度和鲁棒性上与现有估计方法进行了对比分析,验证了所设计估计方法的有效性。
Distributed state estimation of networked systems based on state decomposition
This paper investigates distributed state estimation of discrete-time networked systems and proposes a novel distributed state estimation approach based on state decomposition.Via decoupling the observable state components of the system,each sensor in the network can estimate the corresponding components independently,which achieves the fully distributed design of the estimation approach.To cope with the redundancy of information transmission in the network,a state prediction diffusion strategy is established,and the sensors only transmit the predictions of their observable state components outward,which significantly reduces the consumption of computational and communication resources of the nodes in the sensor network.To prove the boundedness of the error covariance of the estimation approach designed in this paper,a compact form of error covariance iterative equation is constructed,and sufficient conditions for the existence of upper and lower bounds of the covariance are obtained.Finally,the effectiveness of the designed estimation approach is verified in simulation by comparing the estimation accuracy and robustness with existing estimation approaches.

distributed state estimationnetworked systemssensor networksstate decompositionboundedness analysis

邓云松、钟毅、饶红霞、徐雍、鲁仁全

展开 >

广东工业大学自动化学院广东省智能决策与协同控制重点实验室,广州 510006

分布式状态估计 网络化系统 传感器网络 状态分解 有界性分析

国家自然科学基金国家自然科学基金国家自然科学基金广东省自然科学基金

62121004U22A2044622060632021B1515420008

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(9)