首页|集成效用与数据产品最优定价

集成效用与数据产品最优定价

扫码查看
数据定价有助于释放数据的价值,并为数据交易提供依据,推动数据市场的发展和创新。目前,数据价值具有不确定性、多样性和制约性等问题,如何对数据进行准确的价值评估是数据定价的首要问题。在此背景下,本文提出的方法可以有效地解决数据定价的不确定性和多样性问题。本文构建了基于数据质量和容量的二元非线性集成效用函数来评估数据价值,融合斯塔克伯格(Stackelberg)博弈模型分析参与者行为,利用KKT算法实现了数据产品的最优定价。研究发现原始数据的最优容量、最优质量、最优价格和数据产品提供商利润与单位购买成本存在负相关关系,与消费者数量和消费者敏感程度存在正相关关系,且与消费者敏感程度的正相关关系更大。通过与基于一元效用函数的定价模型对比,进一步验证了本文所提出的考虑集成效用的数据产品定价模型具有显著的优越性。
Integrated utility and optimizing pricing of data products
Data pricing plays a crucial role in unlocking the value of data and underpinning data transactions,thereby fostering the growth and innovation of the data market.Given the inherent uncertainty,diversity,and constraints in data valuation,accurately assessing data value stands out as a primary challenge in data pricing.This paper proposes a method that effectively addresses the uncertainty and diversity issues in data pricing.We introduce a binary nonlinear integrated utility function that evaluates data based on both quality and capacity.Incorporating the Stackelberg game model to analyze participant behaviors and employing the Karush-Kuhn-Tucker(KKT)algorithm,our approach achieves optimal pricing for data products.The findings reveal that the optimal capacity,quality,price,and profits of data product providers negatively correlate with the unit purchase cost of raw data,yet show a positive correlation with both the number of consumers and their sensitivity,with a more pronounced correlation with consumer sensitivity.Compared with conventional pricing models based on a univariate utility function,the proposed model demonstrates substantial advantages.

data pricingdata productsdata tradingintegrated utilityStackelberg game model

王煜心、李建平、郝俊

展开 >

中国科学院大学经济与管理学院,北京 100190

数据定价 数据产品 数据交易 集成效用 斯塔克伯格博弈模型

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(11)