首页|格上唯一最短向量问题的细粒度复杂性

格上唯一最短向量问题的细粒度复杂性

扫码查看
唯一最短向量问题(unique shortest vector problem,uSVP)的困难性是一些流行的格密码方案的安全基础,对其在不同参数下的复杂性的研究也是格密码体系的重要组成部分,然而这方面的研究进展十分缓慢,同时对uSVP的细粒度复杂性的研究也十分欠缺。本文改进了一个从最短向量问题(shortest vector problem,SVP)到uSVP的归约算法,提高了其成功概率,调整了参数限制,从而允许建立不同参数条件下从SVP到uSVP的细粒度归约。利用这个归约,得以证明以下结果:(1)在超多项式时间下,得到了一个参数更大的从SVP到uSVP的归约;(2)在强指数时间假设(gap strong exponential time hypothesis,GapSETH)下,构建了从常数参数的SVP到常数参数的uSVP的亚指数时间归约,从而证明了 uSVP在GapSETH下的困难性;(3)以上结果都可以转化成有界距离译码(bounded distance decoding,BDD)的相应结论:在对应条件下求解参数小于1的BDD也是困难的;(4)结合稳定格中的格点个数上界,得到了参数远超常数的从SVP到uSVP的归约。
Fine-grained hardness of the unique shortest vector problem in lattices
The intractability of uSVP(unique shortest vector problem)is the foundation of the security of some popular lattice-based cryptographic schemes.The study of its computational complexity plays an important part in the lattice-based cryptography.However,the research progress on the difficulties of uSVP under different parameters is very slow.There is also a lack of research on the fine-grained hardness of uSVP.In this work,we presented an improved reduction that allows for a fine-grained reduction of SVP(shortest vector problem)instances to uSVP instances.Our reduction has a potentially greater success probability and allows more flexible parameters.Using this reduction,we demonstrated the following results:(1)we presented a reduction from SVP to uSVP with greater parameters,in a super polynomial setting;(2)assuming the GapSETH(gap strong exponential time hypothesis),we presented a reduction from SVP to uSVP with subexponential running time and constant parameters,which proved the intractability of uSVP under GapSETH;(3)all results above can be transferred into the hardness results of BDD(bounded distance decoding),hence BDD with a parameter strictly smaller than 1 is also intractable assuming GapSETH;(4)by combining our reduction with an upper bound for the number of lattice points in stable lattices,we presented several reductions from SVP to uSVP with parameters beyond constant.

shortest vector problemunique shortest vector problemcomputational complexityfine-grained complexitycomplexity reduction

金保隆、薛锐

展开 >

中国科学院信息工程研究所网络空间安全防御重点实验室,北京 100085

中国科学院大学网络空间安全学院,北京 100049

最短向量问题 唯一最短向量问题 计算复杂性 细粒度复杂性 复杂性归约

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(12)