首页|基于流速场预测的水下机器人编队包围算法

基于流速场预测的水下机器人编队包围算法

扫码查看
水下目标编队包围控制旨在通过水下机器人环绕运动,可实现对目标的近距离全方位监测。然而,未知流速场与水下机器人模型不确定等约束,导致水下机器人难以形成可靠、稳定的编队队形。为此,研究了基于流速场预测的水下机器人编队包围问题。首先,根据水下机器人真实轨迹与估计轨迹,设计了分布式流速场参数估计器,以实现流速场实时预测。基于此,结合水下机器人状态与环境信息,提出了动力学模型神经网络估计器,设计了基于导航向量场的目标编队包围算法,以在避障同时对移动目标实现包围控制。最后,给出导航向量场和模型估计器权重更新率的理论推导过程。仿真与实验结果表明,所提流速场预测方法可摆脱对划分栅格的依赖,同时,所提算法能在障碍物与未知流速场环境下完成目标包围任务。
Flow field prediction-based formation surrounding algorithm for autonomous underwater vehicles
The formation surrounding control of underwater targets aims to achieve close-range and all-round monitoring tasks for the targets by autonomous underwater vehicles(AUVs).However,due to the limitations of the unknown flow velocity field and the model uncertainties of AUVs,it is difficult for AUVs to form the reliable and stable formations.Therefore,the flow field prediction-based formation surrounding algorithm for AUVs is studied.First,a distributed velocity field parameter estimator is designed,which achieves real-time prediction of the velocity field using the AUVs'actual and estimated trajectories.Based on this,a neural network-based dynamic model estimator is proposed that combines the state and environmental information of AUVs.Then,a guidance vector field based target-formation surrounding algorithm is designed to achieve target surrounding control while avoiding obstacles.Finally,the theoretical derivations of the guidance vector field and the weight update rate for the model estimator are provided.The simulation and experimental results show that the proposed velocity field prediction method can overcome the dependence on grid partitioning,and the proposed algorithm can complete target surrounding tasks in environments with obstacles and unknown velocity fields.

flow velocity fieldautonomous underwater vehiclesurroundingguidance vector field

曹文强、闫敬、杨睍、陈彩莲、关新平

展开 >

燕山大学电气工程学院,秦皇岛 066004

上海交通大学电子信息与电气工程学院,上海 200240

流速场 水下机器人 包围 导航向量场

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(12)