首页|深度嵌入适应度评估分配策略的约束多目标进化优化方法

深度嵌入适应度评估分配策略的约束多目标进化优化方法

扫码查看
很多实际问题可以归结为约束多目标优化问题。尽管已有多种求解约束多目标优化问题的方法,但是,在全局搜索空间中高效分配适应度评估资源,实现解方案可行性、收敛性和多样性的平衡仍然是个挑战。鉴于此,本文提出深度嵌入适应度评估分配策略的约束多目标进化优化方法,识别搜索空间中的重点区域,引导种群高效进化。该方法首先采用去噪自编码器设计进化种群的降维模型,获取种群在低维空间的流形;然后,在低维空间中聚类种群数据,获得每类种群约束违反度的方差,辅助感知适合每一种群个体的低维全局和局部搜索范围;最后,基于去噪自编码器获得种群个体的原始空间搜索范围,准确分配适应度评估资源。该方法可嵌入已有的进化算法,能不同程度地提升这些进化算法的性能。将所提方法应用于33个基准测试问题和15个矿山综合能源系统运行优化问题,实验结果表明了所提方法求解约束多目标优化问题的有效性。
Constrained multi-objective evolutionary optimization method with a deep-embedded fitness evaluation allocation strategy
Many real-world problems can be framed as constrained multi-objective optimization problems.While various existing methods address these issues,efficiently allocating fitness evaluation resources across the global search space while balancing solution feasibility,convergence,and diversity remains a challenge.To tackle this,we propose a novel constrained multi-objective evolutionary optimization method that incorporates a deep-embedded fitness evaluation allocation strategy.It identifies key regions in the search space and guides population evolution efficiently.The method employs a denoising autoencoder to create a dimensionality reduction model for the evolutionary population,revealing its low-dimensional manifold.By clustering the reduced-dimension population and analyzing constraint violation variances within each cluster,the algorithm can sense global and local search ranges for individual population members.The denoising autoencoder then maps these insights back to the original search space,enabling the precise allocation of fitness evaluation resources.This versatile method can be integrated into existing evolutionary algorithms,enhancing their performance to varying degrees.We validated our approach on 33 benchmark test problems and 15 dispatch optimization scenarios of the integrated mine energy system.The results demonstrate the effectiveness of our proposed method in solving constrained multi-objective optimization problems across diverse applications.

constrained multi-objective optimizationfitness evaluation allocationdeep embeddingevolutionary optimizationintegrated mine energy system

左明成、巩敦卫

展开 >

中国矿业大学人工智能研究院,徐州 221008

青岛科技大学自动化与电子工程学院,青岛 266061

约束多目标优化 适应度评估分配 深度嵌入 进化优化 矿山综合能源系统

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(12)