首页|新型光纤同沟智能识别算法及试验

新型光纤同沟智能识别算法及试验

扫码查看
主备路由光纤同沟是一种高风险事件,光纤选用的随机性导致主备业务可能共享同一沟槽,出现故障会导致主备业务同时中断.当前仅仅依靠人工识别同沟难度大、效率低,给通信网络服务安全性带来了重大风险.为了提升通信网络生存性,本研究提出并验证了一种集成学习检测架构,采用人工智能手段对光纤同沟进行识别.该架构可以在通信网络中实现高准确率的同沟光纤在线识别,无需在线路上人工敲击配合检测.本文采用基于光纤振动动态特性的曲线相似度对比学习器对同沟光纤进行识别,并首次对同沟光纤识别进行了现网试验.对现网中采集到的动态光纤振动数据预处理,基于混淆矩阵中的准确率、F1-score等指标进行评价.本文提出的曲线相似度集成学习算法相比次优非集成学习模型准确度提升6.1%,实验结果验证了所提出架构的可靠性和先进性.
Intelligent fiber co-trench identification algorithm and experiment
The coexistence of primary and backup optical fibers in the same trench poses a high-risk event due to the passive nature of optical fibers,which may lead to the sharing of the same trench by primary and backup services.When faults occur,primary and backup services will interrupt at the same time.Currently,it is difficult and inefficient to rely solely on manual identification of co-trench fibers,which brings significant risks to the service quality of communication networks.To enhance the survivability of communication networks,this paper proposes and validates an ensemble learning detection architecture,utilizing artificial intelligence to identify co-trench fibers.This architecture achieves high-precision online identification of co-trench fibers in operator networks without the need for manual tapping for detection along the routes.This paper employs the curve similarity learner based on the dynamic characteristics of fiber vibration for co-trench fiber identification.For the first time,field trials on co-trench fiber identification were conducted.Preprocessing of dynamic fiber vibration data collected from the field is performed,and evaluation is conducted based on metrics such as accuracy and F1-score derived from the confusion matrix.The curve similarity ensemble learning algorithm proposed in this paper improves accuracy by 6.1%compared to sub-optimal non-ensemble learning models.Experimental results validate the reliability and advancement of the proposed architecture.

fiber co-trench identificationensemble learningcurve similarityartificial intelligencenetwork survivability

李允博、张德朝、刘或聪、杨辉、王东、王志伟

展开 >

中国移动通信有限公司研究院,北京 100053

北京邮电大学信息光子学与光通信全国重点实验室,北京 100876

光纤同沟识别 集成学习 曲线相似度 人工智能 网络生存性

2024

中国科学F辑
中国科学院,国家自然科学基金委员会

中国科学F辑

CSTPCD北大核心
影响因子:1.438
ISSN:1674-5973
年,卷(期):2024.54(12)