首页|富勒烯/卟啉组装体内协同增强的电荷生成与转移实现NAD+高效再生

富勒烯/卟啉组装体内协同增强的电荷生成与转移实现NAD+高效再生

扫码查看
昂贵的辅因子烟酰胺腺嘌呤二核苷酸(NAD+)是限制酶催化商业化应用的主要障碍,因此高效再生NAD+具有重要意义.本文利用液液界面沉积法制备了一种富勒烯-锌卟啉光催化剂(C60-ZnTPP),通过光生空穴氧化NADH再生NAD+.C60-ZnTPP给受体结构具有强大的内建电场(是ZnTPP的5.67倍),最大限度地减少了电荷复合,保证了超快(~1 ps)电荷分离与长寿命的电荷传输(>3 ns),有利于提高光催化NAD+再生性能.本体系以NADH作为唯一的空穴牺牲剂,在可见光照射5小时内达到98.6%的转化率,随后利用在人体解酒中起重要作用的乙醇脱氢酶催化乙醇氧化验证NAD+的酶活性,获得了化学当量的醛.本工作扩展了光催化再生NAD+材料的选择,为完善辅因子的高效再生途径提供了重要指导.
Efficient NAD+regeneration facilitated by synergistically intensified charge generation and transfer in fullerene/porphyrin assemblies
Enzymatic catalysis exhibits the merits of high catalytic rates and specificity,whereas a major obstacle that hampers commercialization is the need for expensive nicoti-namide adenine dinucleotide(NAD+)cofactor;thus the re-generation of NAD+is necessary.Here,we report a fullerene-based photocatalyst(C60-ZnTPP)capable of regenerating NAD+through oxidation of NADH by photogenerated holes,accompanied by simultaneous hydrogen formation.Zinc meso-tetraphenylporphine(ZnTPP)and C60 are combined as a donor-acceptor(D-A)structure with a robust internal electric field(IEF,5.67 times greater than that of ZnTPP),ensuring ultrafast(~1 ps)and long-lived charge separation(>3 ns)and transfer,which is conducive to improving the performance of photocatalytic regeneration of NAD+.NADH is used as the sole hole sacrificial agent in the system,achieving up to 98.6%NAD+regeneration within 5 h under visible light(≥420 nm)illumination.Equivalent oxidation of ethanol is catalyzed by alcohol dehydrogenase,a key enzyme in human alcohol metabolism,to verify the enzymatic activity of pho-tocatalyzed NAD+.This work provides an extended choice of materials available for photocatalytic NAD+regeneration,of-fering valuable insights into optimizing efficient cofactor re-generation pathways.

fullerenesdonor-acceptor structurephotocatalytic NAD+regenerationcharge separationbiocatalytic oxidation

蒋颖、王冲、华紫辉、宋玉朋、乌兰其其格、吴波、王春儒

展开 >

Beijing National Laboratory for Molecular Sciences,Key Laboratory of Molecular Nanostructure and Nanotechnology,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

University of Chinese Academy of Sciences,Beijing 100049,China

Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

College of Chemistry and Life Sciences,Chifeng University,Chifeng 024000,China

展开 >

fullerenes donor-acceptor structure photocatalytic NAD+regeneration charge separation biocatalytic oxidation

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaMinistry of Science and Technology of ChinaYouth Innovation Promotion Association of Chinese Academy of SciencesYouth Innovation Promotion Association of Chinese Academy of Sciences

5207237452322204518320082022YFA1205900CASY2022015

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(1)
  • 2