首页|合理设计多电子转移机制实现更好的水系锌-有机电池

合理设计多电子转移机制实现更好的水系锌-有机电池

扫码查看
由于环境相容性好、分子结构可定制和有机物资源丰富等优势,水系锌-有机物电池(AZOBs)成为构建新一代大规模储能系统的关键技术.然而,电导率差、有机物溶解和单一活性基团等问题严重限制了有机物正极材料的倍率性能、稳定性和比容量.因此,具备多氧化还原中心和稳定骨架的有机物正极材料对于实现高性能有机物正极材料至关重要.这些多官能团有机物可协同作用并激发基于多电子转移的氧化还原反应,进而促进H+/Zn2+共嵌以显著提升电池性能.本文探索了多官能团有机物电极的分子结构与其氧化还原反应机理之间的构效关系.本文综述了多官能团有机正极材料在提高氧化还原电位、比容量、动力学以及稳定性等方面面临的挑战和解决策略,为进一步开发先进AZOBs的关键正极材料提供了重要基础.
Rational design and prospects for advanced aqueous Zn-organic batteries enabled by multielectron redox reactions
Due to their environmental compatibility,cus-tomizable molecular structures,and abundant organic host resources,aqueous Zn-organic batteries(AZOBs)are essen-tial in constructing next-generation energy storage devices.Nevertheless,the current limitations of AZOBs of suboptimal energy density,inadequate rate capability,capacity decay caused by single redox groups,poor conductivity,and high solubility of organic hosts highlight the need for advancement.Therefore,organic cathode materials with multiredox centers and stable skeletons are continuously being pursued in de-veloping high-performance AZOBs.These multifunctional organic compounds can cooperatively trigger multielectron redox reactions with facilitated H+/Zn2+costorage,thereby significantly boosting the battery performance of organic cathode hosts.Furthermore,an imperative aspect of this study involves investigating the structure-function relationship be-tween molecular structures and redox reaction mechanisms within multifunctional organic electrodes,particularly in the context of Zn-organic full-battery systems.This review out-lines the challenges and strategies to enhance the redox po-tential,active capacity,redox kinetics,and cyclability of multifunctional organic cathode materials,providing a valu-able foundation for future advanced AZOBs.

aqueous zinc organic batterymultifunctional organic cathodesenergy storage mechanismmolecular structure opti-mizationhigh performance

Kovan Khasraw Abdalla、王越洋、Kozhi Khasraw Abdalla、熊嘉伟、李琦、王斌、孙晓明、赵逸

展开 >

State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

Department of Biomedical Science,Komar University of Science and Technology,Sulaimaniyah,Iraq

College of Education,University of Georgia,Athens,GA 30605,United States

Minmetals Exploration & Development CO.,LTD,Beijing 100010,China

Advanced Technology Research Institute,Beijing Institute of Technology,Jinan 250300,China

展开 >

aqueous zinc organic battery multifunctional organic cathodes energy storage mechanism molecular structure opti-mization high performance

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNatural Science Foundation of Shandong ProvinceFundamental Research Funds for the Central UniversitiesNational Key Beijing Natural Science FoundationFundamental Research Funds for the Central Universitieslongterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of China

2220900621935001ZR2022QE009buctrc202307Z210016

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(5)