首页|具有丰富孤对电子的亲锌超分子分子通道实现高度稳定锌阳极

具有丰富孤对电子的亲锌超分子分子通道实现高度稳定锌阳极

扫码查看
在柔性设备和静态储能电网应用中,可充电水性锌离子电池展现出巨大的潜力.但其发展受到界面不稳定性引起的副反应及枝晶生长的阻碍.本研究中,我们采用了一种新颖的电解液设计,通过含大量孤电子对的亲锌葫芦[7]超分子来应对这一挑战.这些超分子因其独特的分子结构,能够在电化学循环中有效地吸纳和固定Zn离子,从而有效避免了Zn离子的无序迁移和枝晶的形成.超分子中丰富的孤对电子提供的Lewis碱性位点(如叔胺和羰基氧)作为Zn离子的供电子成核位点,促进了紧密成核.这些超分子与Zn离子之间的强烈相互作用,不仅提高了系统的稳定性,还显著抑制了不良副反应.因此,我们组装的对称电池和Zn//V2O5全电池均展示了长效的循环稳定性和卓越的库仑效率.
Highly stable Zn anodes enabled by molecular channel of zincophilic supermolecules with abundant lone-pair electrons
Rechargeable aqueous zinc-ion batteries offer significant potential for applications in flexible electronics and stationary energy storage grids.However,their development is impeded by interfacial instability,leading to deleterious side reactions and dendritic zinc growth.Here,we introduce a novel solution by employing zincophilic cucurbit[7]uril su-permolecules,which are rich in lone-pair electrons.These supramolecules feature distinct molecular channels that can adeptly accommodate Zn ions during the electrochemical process,thus mitigating Zn ion migration and dendrite for-mation.Moreover,the supramolecular layer offers a wealth of Lewis basic sites(tertiary-N and carbonyl-O)with lone-pair electrons,acting as electron-donating nucleation sites for Zn2+ions,promoting localized nucleation while concurrently re-pelling water molecules,effectively reducing undesired side reactions such as hydrogen evolution and enhancing the sta-bility and efficiency of the system.As a result,symmetric cells and Zn//V2O5 full cells all deliver prolonged cycle life and outstanding coulombic efficiency.These findings highlight the potential of zincophilic supramolecules with lone-pair elec-trons as promising additives for highly stable Zn metal anodes in advanced energy storage devices.

CB[7]supermoleculesmolecular channellone-pair electronsinterface chemical environment regulationZn ion battery

孟超、谭昊、刘宏、王建军

展开 >

State Key Lab of Crystal Materials,Institute of Crystal Material,Shandong University,Jinan 250100,China

Jinan Institute of Quantum Technology,Jinan Branch,Hefei National Laboratory,Jinan 250101,China

State Shenzhen Research Institute,Shandong University,ShenZhen 518057,China

CB[7]supermolecules molecular channel lone-pair electrons interface chemical environment regulation Zn ion battery

National Natural Science Foundation of ChinaShandong Provincial Natural Science Foundation

22279075ZR2020YQ09

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(5)